
Microsoft DynamicsTM NAV 5.00
C/FRONT Reference Guide

C/FRONT REFERENCE GUIDE

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted in examples herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred. Complying with all applicable copyright laws is
the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Server, Windows Vista, Application Server for
Microsoft Dynamics NAV, AssistButton, C/AL, C/FRONT, C/SIDE, FlowField, FlowFilter,
C/SIDE Database Server for Microsoft Dynamics NAV, Microsoft Business
Solutions–Navision, Microsoft Dynamics NAV, Microsoft Dynamics NAV Debugger,
Navision, NAV ODBC, SIFT, SIFTWARE, SQL Server, SumIndex, SumIndexField are either
registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

All other trademarks are property of their respective owners.

PREFACE

This book is a manual for the C/FRONT application programming interface that can be
used to access a C/SIDE® database. This manual describes how to install and use
C/FRONT. This book is part of a comprehensive set of documentation and Help
materials for Microsoft Dynamics™ NAV.

You should also be familiar with the symbols and typographical conventions used in
the Microsoft Dynamics NAV manuals. In the list below, you can see how various
elements of the program are distinguished by special typefaces and symbols:

Appearance Element

Ctrl Keys on the keyboard. They are written in small capitals.

Design Menu items and buttons in windows. They always start with a capital
letter, and the access key is underlined.

Address Field names. They appear in medium bold and start with a capital letter.

Department Names of windows, boxes and tabs. They appear in medium bold italics
and start with a capital letter.

Hansen Text that you must enter, for example: "...enter Yes in this field." It is
written in italics.

fin.flf File names. They are written with the Courier font and lowercase letters.

p o h b k The special symbols that can be seen in the windows on the screen.

TABLE OF CONTENTS
Chapter 1 Introduction to C/FRONT .1

Introduction to C/FRONT . 2

Service Packs and Security Updates . 5

Chapter 2 Review of Standard Operations .7

The Standard Operations . 8

Chapter 3 A Sample Application .21

Building and Running the Sample Application. 22

Chapter 4 The Library Functions .25

Library Functions Grouped by Use . 26

Library Functions in Alphabetical Order . 33

Appendix A C/FRONT Library Specifications 143

C/FRONT Library Specifications. 144

Appendix B The Alpha Type .147

Alpha Type . 148

Table of Contents

Chapter 1

Introduction to C/FRONT

This is an introduction to C/FRONT and describes the
contents of C/FRONT, the system requirements,
standby/hibernation and multilanguage.

This chapter contains:

· Introduction to C/FRONT

· Service Packs and Security Updates

Chapter 1. Introduction to C/FRONT
1.1 Introduction to C/FRONT

C/FRONT is an application programming interface that can be used to access a
C/SIDE® database. C/FRONT facilitates high-level interaction with the C/SIDE database
manager, and allows C developers to manipulate any C/SIDE database. C/FRONT has
been primarily designed to allow developers to retrieve and update tables and not for
executing business logic.

The central component of C/FRONT is a library of C functions. These functions give you
access to every aspect of data storage and maintenance, and allow you to integrate
both standard and custom applications with your C/SIDE database.

This Manual
This manual explains how to use the library functions to access the features and
facilities of a C/SIDE database. It consists of five chapters:

• Chapter 1 – Introduction to C/FRONT:
Lists the contents of C/FRONT and explains how to configure C/FRONT.

• Chapter 2 – Review of Standard Operations:
Explains and demonstrates how to use some of the library functions in frequent
operations.

• Chapter 3 – A Sample Application:
Explains how to run the sample application that comes with C/FRONT. The source
code is available on the Microsoft Dynamics™ NAV product DVD in the file called
sample.c.

• Chapter 4 – The Library Functions:
All of the C/FRONT functions are listed and described.

Appendix A lists the type and constant definitions.

Appendix B describes nonstandard data formats.

It is assumed that the reader has a good knowledge of C and C/SIDE. For further
information about these subjects, refer to your C manuals and the Application
Designer’s Guide.

The Contents of C/FRONT
C/FRONT provides an interface to the C language, and is distributed on the Dynamics
NAV product DVD. The following files are distributed:

File name Used for

cfront.dll C/FRONT C-API library

cfrontsql.dll C/FRONT C-API library

cf.h C/FRONT header file

libload.c Source file containing functions to load and unload cfront.dll

dberror.txt Database error/return codes
2

1.1 Introduction to C/FRONT
In addition to these files, C/FRONT contains a sample application – see Building and
Running the Sample Application on page 22 for details.

Before you can use C/FRONT, you must copy the following files from Dynamics NAV to
the directory where you have installed C/FRONT:

dbm.dll
nc_netb.dll
nc_tcp.dll
slave.exe
fin.etx
fin.stx
fin.flf

You must also have a database. These files are all part of a standard Dynamics NAV
installation. Last minute changes to C/FRONT are documented in the file Readme.txt
that is distributed on the Dynamics NAV product DVD. Please read this file before
beginning the installation.

Installation
The Readme.txt file on the product DVD contains detailed and up-to-date
information on installing C/FRONT.

System Requirements
C/FRONT can be used on Windows XP and Windows Vista. It has been tested with the
Watcom C compiler, version 10.5a and with Microsoft Visual C++, version 5.00. It can
also be used with any other compiler that can load and use DLLs correctly, but note
that the functions in the C/FRONT DLL module are called with the _CDECL calling
convention.

Standby and Hibernation
C/FRONT supports the standby and hibernation facilities provided by Windows.

Putting your computer on standby means that the entire computer switches to a low
power state. When on standby all devices, such as the monitor and hard disks, turn off
and your computer uses less power. When you want to use the computer again, it
comes out of standby quickly, and your desktop is restored exactly as you left it.
Standby is particularly useful for conserving battery power in portable computers.
Because standby does not save your desktop state to disk, a power failure while on
standby can cause unsaved information to be lost.

Putting your computer in hibernation means that before shutting down your computer
saves everything that is currently in memory to disk, turns off your monitor and hard
disk, and then turns off your computer. When you reactivate your computer, your
desktop is restored exactly as you left it. It takes longer to bring your computer out of
hibernation than out of standby.

cfront.ocx C/FRONT OCX

File name Used for
3

Chapter 1. Introduction to C/FRONT
Shutting Down The individual workstations can specify that their computer should go to standby or
hibernate after being idle for a certain length of time. It is also possible to make the
computer go to standby from the Shut Down dialog box in Windows.

Windows will not go to standby or hibernation if there is an open server connection
from C/FRONT.

If you attempt to make the computer go to standby from the Windows Shut Down
dialog box, a window will appear informing you that C/FRONT is busy and that
shutting down is not yet possible.

If you click Cancel in this window, the hibernation or standby procedure will be
postponed. Alternatively, you can ignore this window and the computer will shut down
when C/FRONT has completed its task.

Restarting When you restart your computer after it has gone to standby or is in hibernation it will
restart with the desktop exactly as it was when you left it. However, the information
displayed will also be the same and will therefore not necessarily be up to date.

The window will not be updated until you use the program and actively update the
window in question.

Multilanguage
Dynamics NAV is multilanguage enabled, allowing users to change application
language on the fly. This is achieved by adding captions to the objects in the database.
These captions contain the names of the database objects in the languages that are
available in your application. However, C/FRONT does not have any table or field
caption functions that you can use to identify these different names.

Any programs that use C/FRONT will therefore not be able to identify the names of the
database objects in the various application languages that are available. To obtain this
information you can generate a text file listing all of the objects in the database and
the captions that they contain.

To generate this text file:

1 Open the Object Designer and select all the objects.

2 Click Tools, Translate, Export.

This file will list all the objects in the database and each object will be listed once for
each language that it used in your application.

Here is an example:

T3-F2-P8629-A1033-L999:Due Date Calculation

Table 3, Field 2, Property 8629(Caption), Language ID 1033 (US English), Max. Length
999, the name of the object.

You can now use the information contained in this text file in the program that uses
C/FRONT.
4

1.2 Service Packs and Security Updates
1.2 Service Packs and Security Updates

The installation is not complete until you have installed the latest service packs and
applied the latest security updates to your system. Keeping your system up-to-date by
installing the latest service packs is one of most important things you can do in
managing the security of your system.

You should visit Microsoft Update and install all the relevant updates on every
computer in your Dynamics NAV installation. We also recommend that you enable
Automatic Updates on each computer so that they can receive security & critical
updates automatically.
5

Chapter 1. Introduction to C/FRONT
6

Chapter 2

Review of Standard Operations

C/FRONT contains functions that allow you to perform all
the standard operations that are used to maintain a C/SIDE
database.

The chapter contains the following topics:

· The Standard Operations

Chapter 2. Review of Standard Operations
2.1 The Standard Operations

Maintaining a C/SIDE database involves a number of operations:

• Determining which DLL to Use
• Initializing the Library
• Connecting to a Server and Opening a Database
• Opening a Company
• Opening a Table
• Using Filters
• Using Keys
• Finding a Record
• Inserting a Record
• Modifying a Record
• Deleting a Record
• Editing a Field in a Record
• Handling Errors and Exceptions

These operations are illustrated with the help of small sample routines. All of the
functions are fully explained in chapter 5, "The Library Functions".

Determining which DLL to Use
Dynamics NAV can run on two different servers and C/FRONT therefore comes with
two different DLLs: CFRONT.DLL and CFRONTSQL.DLL. They will both be installed when
you install C/FRONT.

If you are running on C/SIDE Database Server you must use CFRONT.DLL. If you are
running on Microsoft SQL Server you must use CFRONTSQL.DLL.

Initializing the Library
To initialize the library and configure the environment, call DBL_Init. This function
initializes internal data structures, creates buffers, and loads the dynamic link libraries
required by the library.

As shown below, this operation is usually performed in the main() function of the C
program:

void main(int argc, char* argv[])

{
DBL_Init();
/* ... */
DBL_Exit();
exit(0);
}

8

2.1 The Standard Operations
Connecting to a Server and Opening a Database
C/FRONT contains a single function that you can use to connect with a server and open
a database. This function works with both C/SIDE Database Server and the Microsoft
SQL Server Option and enables you to connect to a server, open a database and specify
the kind of authentication to use.

Microsoft SQL Server Option
The following example illustrates how to use this function with the SQL Server Option.

#define DRIVERNAME "NDBCS"
#define SERVERNAME "SQL 1"
#define NETTYPE "Named Pipes"
#define DATABASENAME "My Database.mdf"
#define CACHESIZE 0
#define USECOMMITCACHE 0
#define USENTAUTHENTICATION 1
#define USERID ""
#define PASSWORD ""

DBL_ConnectServerandOpenDatabase(DRIVERNAME, SERVERNAME, NETTYPE,
DATABASENAME, CACHESIZE, USECOMMITCACHE, USENTAUTHENTICATION, USERID,
PASSWORD);
/* ... access the database ... */

 DBL_DisconnectServer();

/* ... */

If you are using SQL Server you still have to enter a zero value for CacheSize or
UseCommitCache even though they only apply to the C/SIDE Database Server.

If you select Windows Authentication (UseNTAuthentication=1) then you do not
have to supply a user ID or a password. However you must enter two empty sets of
quotes ("") in order to comply with the syntax.

You must run this function again if you want to open another database. This database
can be on the same server or on another server.

C/SIDE Database Server
The library can either run in 'local mode' or be connected to a remote server in a
network. When the user connects to a C/SIDE Database Server in a network a database
is opened automatically by the server. When the library is run in 'local mode' (the
database is stored on the same computer as your application), a database must be
opened explicitly.

The following routine works in both environments:

#define DRIVERNAME "NDBCN"
#define SERVERNAME "accounting"
#define NETTYPE "tcp"
#define DATABASENAME "Database.fdb"
#define CACHESIZE 1000
#define USECOMMITCACHE 0

DBL_BOOL RemoteMode = 0;
9

Chapter 2. Review of Standard Operations
/* ... */

if (RemoteMode)
DBL_ConnectServerandOpenDatabase(DRIVERNAME, SERVERNAME, NETTYPE,
DATABASENAME, CACHESIZE, USECOMMITCACHE);

/* ... access the database ... */

if (RemoteMode)
 DBL_DisconnectServer();
else
 DBL_CloseDatabase();

/* ... */

If the open/connect operation fails, the function raises an exception that terminates the
application.

Only one database/server connection can be open at a time.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

Note

C/FRONT does not support the use of extended characters in directory and database
names.

Opening a Company
A database consists of one or more companies. A company is a "subdatabase," whose
primary use is to separate and group data within one database. A company "bundles"
one or more tables together into a logical structure that is identified by the company
name. The tables within a company do not need not have anything in common other
than the shared company name.

Only one company can be open at a time. You must open a company before the
application can access the data in the database tables. By opening a company, you
specify which data tables can be opened by DBL_OpenTable.

#define COMPANYNAME "Test Company"
DBL_OpenCompany(COMPANYNAME);
/* ... open tables ... */
DBL_CloseCompany();

If the company that you want to open does not exist, the function raises an exception
that terminates the application.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

A database maintains a list of the companies that it contains. To retrieve the names of
all the companies contained in a database, execute the DBL_NextCompany function in
a loop:

DBL_U8 *CompName;
10

2.1 The Standard Operations
for (CompName = NULL; CompName = DBL_NextCompany(CompName);)
{
/* ... */
}

For more information about companies, see the Application Designer’s Guide.

Opening a Table
A database contains a number of tables that can be manipulated with the functions in
the library. You can have any number of tables, within a single company, open at the
same time. A table is identified by a unique number. When a table is opened, the
database manager returns a unique handle, which remains valid until the table is
closed. This handle must be passed to all operations that are carried out on the table.

If you do not know the number of the table that you want to open, you can look it up
with the library function DBL_TableNo. This function requires the name of the table as a
parameter. Table names are also unique.

Manipulating a table often requires the use of filters and keys. Filters and keys are
bound to a handle and not to a table. This allows you to open various "views" of a
single table, each with its own key and set of filters, to suit the needs of individual
applications.

The following example illustrates how a table is represented by its handle, with the
symbolic name hTable.

#define TABLENAME "MyTable"

DBL_HTABLE hTable;
DBL_S32 TableNo;

TableNo = DBL_TableNo(TABLENAME);

if (TableNo != 0)
{
DBL_OpenTable(&hTable, TableNo);
/* ... access data in the table ... */
DBL_CloseTable(hTable);
}

Filters and keys are discussed in the next section. For more information about tables,
see the Application Designer’s Guide.

Using Filters
Filters limit the number of records that are being manipulated. Filters limit the number
of records that are selected for calculating column sums, in record searches, and in
other activities. The library contains two functions that can set a filter: DBL_SetFilter and
DBL_SetRange. DBL_SetRange is a subfunction of DBL_SetFilter.

In the following example, the operations will only affect records with Field Number 2
that are within the ranges 100..200 and 300..400.

#define TABLENUMBER 15
11

Chapter 2. Review of Standard Operations
DBL_HTABLE hTable;
DBL_S32 FieldNo;
/* ... */
DBL_OpenTable(&hTable, TABLENUMBER);
FieldNo = 2;
DBL_SetFilter(hTable, FieldNo, "100..200&300..400", NULL);
/* ... retrieve data within the specified range ... */
DBL_CloseTable(hTable);
/* ... */

Setting a Range The DBL_SetRange function is used in the following way:

DBL_HTABLE hTable;
DBL_S32 FieldNo = 2;
DBL_S32 MinValue = 100;
DBL_S32 MaxValue = 200;

/* ... */
DBL_SetRange(hTable, FieldNo, &MinValue, &MaxValue);
/* ... retrieve data within the specified range ... */
/* ... */

DBL_SetFilter can use the & or | operators to specify a complex interval as the condition
for a field, but DBL_SetRange can specify only a single interval. A filter can be retrieved
by the function DBL_GetFilter, and the range by DBL_GetRange.

For more information about filters, see the Application Designer’s Guide.

Using Keys
You can use keys to sort the records in a table according to the values in specified
fields, for example, in ascending order. You can find a field that contains a specific
value much faster when the records are sorted (using a key). A key maintains the
relationship between the records, in a structure called an index.

A key is composed of one or more fields. You specify how these fields are ordered in
C/SIDE. Keys cannot be defined or modified in C/FRONT.

A table can contain up to 20 keys, each with its own index. The first key in a table is the
primary key and the data it contains must always be unique. The index for each key is
maintained by the C/SIDE database manager.

All of the other keys are secondary keys. Multiple secondary keys may be active
simultaneously. The secondary keys do not have to contain unique data. Records
containing identical data in secondary key fields are "sub-sorted" once again,
according to the value of the primary key because the primary key is always in effect
with the current secondary key.

Keys can be active or inactive. Keys can be activated or deactivated in C/SIDE, not in
C/FRONT. Only active keys are available to library functions.

When you insert, delete or modify a record, the indexes that are maintained by all of
the active keys are automatically updated to reflect any changes that are made to the
table. The indexes of inactive keys are not updated. If at some point you reactivate a
key (in C/SIDE) that has been inactive, you must allow some time for the application to
12

2.1 The Standard Operations
rebuild the index structure. This may require some additional disk space if the space
that has been allocated to the database is nearly full, because each key occupies space
in the database.

The Current Key
Although keys can only be defined in C/SIDE, the key needed for the current
application can be selected in the library. This key is then called the current key. The
current key is always attached to the table handle, not to the table itself.

The following example shows how to select the current key:

DBL_HTABLE hTable;
DBL_S32 Key[DBL_MaxFieldsPerKey+1];

/* ... */

Key[0] = 3;
Key[1] = 0; /* Zero-terminated list */
DBL_SetCurrentKey(hTable, Key);

/* ... scan table sorted by field number 3 ... */

/* ... */

The primary key is selected when you call DBL_SetCurrentKey with the Key parameter
equal to NULL.

Each table maintains a list of all its keys. To retrieve this list, execute the DBL_NextKey
function in a loop:

DBL_HTABLE hTable;
DBL_S32 *Key;
DBL_S32 *Field;

/* ... */

for (Key = NULL; Key = DBL_NextKey(hTable, Key);)
{
printf("Key contains the following field number(s):\n");

for (Field = Key; *Field; Field++)
printf("%d\n", *Field);
}

/* ... */

Other key functions are:

For more information about keys and SumIndexFields, see the Application Designer’s
Guide.

Function Purpose

DBL_GetCurrentKey Retrieves the key that is currently selected.

DBL_KeySumFields Returns a list of SumIndexField® numbers for a specified key.
13

Chapter 2. Review of Standard Operations
Finding a Record
Two functions are used to retrieve records:

To create a record buffer, call DBL_AllocRec. This function allocates an area of memory
equal to the size of the record, including virtual fields (FlowField® and FlowFilter®).
You must remove the record buffer when you are finished using it, by calling
DBL_FreeRec.

In the following routine, DBL_FindRec searches for the first record in the table, copies it
to a buffer and performs some operations on it. Control is then passed to DBL_NextRec,
which steps through the entire file performing the same operations on each record.

DBL_HTABLE hTable;
DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */
hRec = DBL_AllocRec(hTable);

/* Let DBL_FindRec return error if not present */
DBL_Allow(DBL_Err_RecordNotFound);

/* Find the first record */
if (DBL_FindRec(hTable, hRec, "-"))
{
do
{
/* ... */

/* Get the next record */
} while (DBL_NextRec(hTable, hRec, 1));
}
DBL_FreeRec(hRec);
/* ... */

For more information about records and FlowFields, see the Application Designer’s
Guide.

Inserting a Record
Inserting a record is a three-step operation:

1 Call DBL_InitRec to initialize the record. This function assigns the default field values
that were defined when the record layout was created in C/SIDE.

Function Purpose

DBL_FindRec Locates a record that contains given values in the fields of the current
key, and copies it to a buffer. The current filters are used when
searching.

DBL_NextRec Uses the current sorting sequence to retrieve a record in the table
relative to a specified record, and copies it to a buffer. The current filters
are used when searching.
14

2.1 The Standard Operations
2 Modify the field values.

Be aware that the library does not provide range and validity checks. You must verify
that the inserted data is valid.

3 After you have verified the contents of the fields, call DBL_InsertRec to insert the
record into the table.

The database manager will ensure that the new record is automatically inserted into
the correct place. The correct place is determined by the values of the fields in the
primary key.

In the following example, an initialized record is inserted into the table:

DBL_HTABLE hTable;
DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */
hRec = DBL_AllocRec(hTable);

/* Initialize record */
DBL_InitRec(hTable, hRec);

/* ... assign values to fields in hRec ... */

DBL_BWT();
DBL_Allow(DBL_Err_RecordExists);
if (DBL_InsertRec(hTable, hRec))
{
printf("Record inserted.\n");
DBL_EWT();
}
else
{
 printf("Record NOT inserted. Record already exists.\n");
DBL_AWT();
}

/* ... */

The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all the
database updates that are grouped in a series are either committed (DBL_EWT) or
rolled back (DBL_AWT).

Modifying a Record
Use the DBL_ModifyRec function to change the field values in a record. The record
structure itself cannot be changed by using any of the library functions. The record
structure can only be changed in C/SIDE.

Be aware that the library does not provide range and validity checks.You must verify
that the data being inserted is valid.

The following example below shows how a modified record is copied from its buffer
and written to the original record in the table. The fields are changed while the record
15

Chapter 2. Review of Standard Operations
is in the buffer, but this is not shown in this example. To see the steps in detail, refer to
Editing a Field in a Record on page 17.

DBL_HTABLE hTable;
DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */
hRec = DBL_AllocRec(hTable);

/* ... retrieve record to modify from the table ... */

/* ... assign values to fields in hRec ... */

DBL_BWT();
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_ModifyRec(hTable, hRec))
{
printf("Record modified\n");
DBL_EWT();
}
else
{
printf("Record NOT modified. Record not found\n");
DBL_AWT();
}

/* ... */

The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all database
updates grouped in a series are either committed (DBL_EWT) or rolled back
(DBL_AWT).

Deleting a Record
Use DBL_DeleteRec to delete a record from a table. This function can remove any or all
records in a table, but the table description itself can only be deleted in C/SIDE.

DBL_HTABLE hTable;
DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */
hRec = DBL_AllocRec(hTable);

/* ... retrieve record to delete from the table ... */

DBL_BWT();
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_DeleteRec(hTable, hRec))
printf("Record deleted\n");
else
{
printf("Record NOT deleted. Record not found\n");
DBL_AWT();
}

16

2.1 The Standard Operations
DBL_EWT();

/* ... */

The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all database
updates that are grouped in a series are either committed (DBL_EWT) or rolled back
(DBL_AWT).

Editing a Field in a Record
Before you can edit a record, you must retrieve it from the table and have it copied to a
buffer, where you can access it by using a record handle. You can then use the
DBL_AssignField function to assign new values to (edit) the fields in the record.

In the following example, DBL_FindRec is first used to retrieve the record and copy it to
a buffer. Then it is accessed with the hRec handle, and a new value is assigned to field
number 3.

DBL_HTABLE hTable;
DBL_HREC hRec;

/* ... */

DBL_FindRec(hTable,hRec,"=");
DBL_AssignField(hTable,hRec,3,DBL_FieldType(hTable,3),"RAW",
strlen("RAW"));

DBL_BWT();
DBL_ModifyRec(hTable, hRec);
DBL_EWT()

/* ... */

Handling Errors and Exceptions
Errors can occur if you use the library functions incorrectly. If an error occurs, the library
terminates your application. However, you can specify that some errors are allowed by
using the DBL_Allow function. For more information, see DBL_Allow() on page 35.

The library function DBL_Allow enables the programmer to allow the following errors:

• DBL_Err_TableNotFound
• DBL_Err_RecordNotFound
• DBL_Err_RecordExists
• DBL_Err_KeyNotFound

These allowable errors can occur in the following library functions:

• DBL_OpenTable
• DBL_FindRec
• DBL_InsertRec
• DBL_DeleteRec
• DBL_ModifyRec
17

Chapter 2. Review of Standard Operations
• DBL_SetCurrentKey

If the error that causes the function to fail has been allowed by DBL_Allow, the function
will return 0. If it has not been allowed, the library will do the following:

1 Fetch the corresponding error message and call the message handler, passing the
error message as a parameter. If no message handler has been set, the error
message is written to standard output.

2 Call the exception handler.

The following routine demonstrates how to allow an unsuccessful result for a record
retrieval:

/* ... */

/* Allow DBL_FindRec to fail */
DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, "="))
 printf("Record was found\n");
else
 printf("Record was NOT found\n");

/* ... */

When a library function detects an error or sends a warning, it fetches the
corresponding error message and calls the default message handler, passing the
message, the message type and the message code as arguments. The default message
handler writes the error message to standard output.

However, you can choose to install your own message handler by using the library
function DBL_SetMessageShowHandler. Your custom message handler can do such
tasks as:

• hide particular messages
• map some messages to your own versions
• improve the formatting of the messages
• log messages to a file

Error messages passed to the message handler (and displayed by the default message
handler) are retrieved from the fin.etx and fin.stx ASCII files. You can inspect the
contents of these files with an ASCII editor.

After the library has detected an error and the message handler has been called, the
default exception handler is called. The default exception handler simply terminates
the application. You can install your own exception handler to prevent the application
being terminated. Use the library function DBL_SetExceptionHandler to install your
own exception handler.

The exception handler receives two parameters: the error code and a fatal error flag.
The error code identifies the error (this has the same value as the message code in the
message handler) and the fatal error flag tells you whether you are able to continue to
use the library functions or if you must terminate your application.
18

2.1 The Standard Operations
If the error is nonfatal and you decide not to terminate your application in your
exception handler, the execution is continued immediately after the library call that
raised the exception.

If the error is fatal, the library will terminate the application, when you return from your
exception handler.

In short the exception handler can be used to:

• save data before the application is terminated.
• continue when the errors are not fatal.
19

Chapter 2. Review of Standard Operations
20

Chapter 3

A Sample Application

C/FRONT comes with a sample application.

The chapter contains:

· Building and Running the Sample Application

Chapter 3. A Sample Application
3.1 Building and Running the Sample Application

In the C/FRONT folder on the product DVD you will find a sample C/FRONT C-API
program named sample.c (source file) and sample.exe (executable). You can either
use the executable, or build your own by using the source file. This sample program
tests the most basic C/FRONT functions and can be used as a source of inspiration for
your own programs. It can connect to a database directly or via a server.

The Sample Application
The sample application consists of the following files:

You will also need the libload.c file – the file that contains the functions that load
and unload the cfront.dll/cfrontsql.dll.

Building the C/FRONT Sample Application
1 Copy libload.c and sample.c to your compiler directory and cf.h to your

include directory.

2 Edit sample.c :

Delete #include <cf/dbl_type.h> and #include <cf/dbl_td.h>. Replace
them with #include <cf.h>

3 Compile sample.c and libload.c.

4 Link sample.obj and libload.obj to sample.exe.

Running the Sample Application on SQL Server
If you are running on Microsoft SQL Server you must also perform the following tasks
before you can run the sample application:

1 Open the SQL Server Option for Microsoft Dynamics NAV and create a new
database called sample.

2 Restore the backup of the sample database sample.fbk into this new database.

Running the Sample Application
1 Copy the sample application sample.exe to the directory where

cfront.dll/cfrontsql.dll and sample.fdb are placed. This is normally the
directory where C/FRONT is installed.

File Contents

sample.c C/FRONT sample application source file.

sample.exe C/FRONT sample application executable.

sample.fbk Dynamics NAV sample database backup.

sample.fdb Dynamics NAV sample database.

sample.txt Text file describing how to build and run the sample application. Any last-minute
changes are also described here.
22

3.1 Building and Running the Sample Application
2 Normally, the C/FRONT library (cfront.dll/cfrontsql.dll) reads the registry in
order to locate the Dynamics NAV DBMS system. However, if multiple Dynamics
NAV systems are installed or if Dynamics NAV is not present on the system, the
function SetNavisionPath in the cfront.dll/cfrontsql.dll library must be
called specifying the path to the directory where Dynamics NAV is installed or to a
directory containing the following files from a Dynamics NAV installation:

dbm.dll
nc_netb.dll
nc_tcp.dll
slave.exe
fin.etx
fin.stx
fin.flf

Alternatively these files can also be copied to the directory where the sample
application and the database are stored.

3 You run the sample application by entering the command sample. But you may also
enter one or more of the following parameters:

Note

If you are running on SQL Server, you must have a Windows login in order to connect
to the sample application.

When you enter the path to Dynamics NAV, you must enter \\ for each \. For example,
C:\\Program Files\\...

Example
If you have installed the sample application on your client computer, enter the
following command to run it:

sample

If the program is started by entering the sample command only, the following appears
on the screen during startup:

Company present C/FRONT Sample Company
Testing some table functions ..OK
Verifying create table functions ..OK
Verifying the table layout ..OK
Deleting all records ..OK

Parameter Meaning

-d Database name

-t Run the exception handler test

-s Server name

-p Set Dynamics NAV path.

-n Nettype – C/SIDE Database Server: tcp, netb – SQL Server: Default, Named Piped,
TCP/IP Sockets, Multiprotocol.
23

Chapter 3. A Sample Application
Creating test data ..OK
Verifying test data ..OK
Verifying modified test data ..OK
Testing string to/from type conversion ..OK
Testing filter functions ..OK
Testing key functions ..OK
Testing bcd functions ..OK
Testing sum functions ..OK
Database test ended

If the program is started with a parameter (in the case illustrated below, using sample
-t), the text will be a little different:

Company present C/FRONT Sample Company
Testing some table functions ..OK
Verifying create table functions ..OK
Verifying the table layout ..OK
Deleting all records ..OK
Creating test data ..OK
Verifying test data ..OK
Verifying modified test data ..OK
Testing string to/from type conversion ..OK
Testing filter functions ..OK
Testing key functions ..OK
Testing bcd functions ..OK
Testing sum functions ..OK
Exception Handler test
TableData 2000 does not exist.
Exception Handler called with Database Error: 1001.
Database test ended

If you have installed the sample application on a C/SIDE Database Server you can enter
the following code when you want to run the sample application:

sample -s"My Server" -ntcp -penter the path

To use CFRONT to access a database on a C/SIDE Database Server enter the following
code:

sample -s"My Server" -ntcp -d"My database" -t -p enter the path
24

Chapter 4

The Library Functions

The functions in the C/FRONT function library are listed and
described in this chapter. The functions are grouped
according to use and then they are grouped alphabetically.

The chapter contains:

· Library Functions Grouped by Use

· Library Functions in Alphabetical Order

Chapter 4. The Library Functions
4.1 Library Functions Grouped by Use

Initialization and Finalization Functions

Database Functions

Function Purpose

DBL_Init() Initializes the library

DBL_Exit() Closes the library

DBL_SetNavisionPath() Sets the path to the Dynamics NAV files

Function Purpose

DBL_ConnectServerandOpenDatabase() Connects to a server and opens a database

DBL_ConnectServer() Connects to a server

DBL_DisconnectServer() Disconnects from a server

DBL_ReleaseAllObjects() Frees all resources in C/FRONT

DBL_OpenDatabase() Opens a database

DBL_CloseDatabase() Closes a database

DBL_OpenCompany() Opens a company

DBL_CloseCompany() Closes a company

DBL_CompanyName() Retrieves the current company name

DBL_NextCompany() Scans company names

DBL_GetDatabaseName() Tests whether a database is open and – if it is open –
returns its name.

DBL_GetLanguage Retrieves the language ID that is currently used

DBL_CheckLicenseFile() Checks user permissions against license file

DBL_LoadLicenseFile() Loads a license file.

DBL_GetVersion() Gets version number of C/FRONT library

DBL_AddKey() Adds keys and SumIndexFields to a table

DBL_AddTableField() Adds a field to a table

DBL_CreateTable() Creates a database table

DBL_CreateTableBegin() Acquires a create table handle

DBL_CreateTableEnd() Releases a create table handle

DBL_DeleteTable() Deletes a table from a database

DBL_SetLanguage() Sets the language ID

DBL_TestSysPermission() Tests whether the current license has execute
permission to a specified object

DBL_Str_Compare_Database() Compares 2 strings in the database
26

4.1 Library Functions Grouped by Use
Security Functions

Table Functions

Function Purpose

DBL_Login() Authorizes entry to a database

DBL_UserID() Retrieves current user ID

DBL_UserCount() Counts users in a database

DBL_CryptPassword() Encrypts password

DBL_UseCodeUnitsPermissions() Allows you to use the permissions of a codeunit

Function Purpose

DBL_OpenTable() Opens a table

DBL_CloseTable() Closes a table

DBL_GetView() Returns the sort, key and filters on a table

DBL_OpenTemporaryTable() Creates a temporary table

DBL_LockTable() Locks a table

DBL_TableCaption() Retrieves the table caption

DBL_TableDup() Duplicates a table

DBL_TableIsSame() Compares two tables

DBL_TableName() Retrieves a table name

DBL_TableNo() Retrieves a table number

DBL_NextTable() Scans table numbers

DBL_CalcSums() Accumulates the sums of specified columns

DBL_SetView() Sets the current sort, key and filters on a table
27

Chapter 4. The Library Functions
Record Functions

Transaction Functions

Function Purpose

DBL_AllocRec() Creates a record buffer

DBL_DupRec() Duplicates a record

DBL_FreeRec() Removes a record buffer

DBL_FindRec() Finds a record

DBL_FindTopRec() Finds the first or the last record

DBL_FindSet() Finds a set of records

DBL_NextRec() Scans records

DBL_InsertRec() Inserts a record

DBL_DeleteRec() Deletes a record

DBL_DeleteRecs() Deletes all records in a table

DBL_ModifyRec() Modifies a record

DBL_CopyRec() Copies a record

DBL_CmpRec() Compares two records

DBL_InitRec() Initializes fields in a record

DBL_RecCount() Counts records

DBL_RenameRec() Renames a record

DBL_CalcFields() Updates FlowFields in a record

Function Purpose

DBL_BWT() Begins a write transaction

DBL_EWT() Ends a write transaction

DBL_AWT() Aborts a write transaction

DBL_SelectLatestVersion() Selects the latest data version
28

4.1 Library Functions Grouped by Use
Field Functions

Key Functions

Filter Functions

Function Purpose

DBL_FieldCaption() Retrieves the caption for a field in a table

DBL_FieldCount() Counts the number of fields in record

DBL_NextField() Scans the fields in a table

DBL_FieldLen() Retrieves the declared length of a field

DBL_FieldNo() Retrieves a field number

DBL_FieldName() Retrieves a field name

DBL_FieldType() Retrieves a field type

DBL_FieldSize() Retrieves the field size in bytes

DBL_AssignField() Assigns a value to a field in a record

DBL_GetFieldData() Retrieves data from a field

DBL_GetFieldDataAddr() Retrieves the address of field data

DBL_GetFieldDataSize() Retrieves the size of field data

DBL_FieldDataOffset() Retrieves the offset of a field

DBL_FieldOptionCaption() Retrieves the option caption for a field

DBL_FieldOptionStr() Retrieves the option string of a field

DBL_FieldClass() Retrieves the class of a field

Function Purpose

DBL_SetCurrentKey() Sets the current key for a table

DBL_GetCurrentKey() Retrieves the current key

DBL_KeyCount() Counts the keys

DBL_NextKey() Scans the keys of a table

DBL_KeySQLIndexFields() Retrieves the SQLIndexFields of a key

DBL_KeySumFields() Retrieves the SumIndexFields of a key

Function Purpose

DBL_SetFilter() Sets a filter for a field

DBL_RemoveFilter() Removes a filter from a field

DBL_GetFilter() Retrieves the current filter

DBL_SetRange() Sets a range filter for a field

DBL_GetRange() Retrieves the current range filter
29

Chapter 4. The Library Functions
Conversion Functions

Function Purpose

DBL_Field_2_Str() Converts a value to a string

DBL_YMD_2_Date() Converts date elements to DATE type

DBL_Date_2_YMD() Converts a DATE type to date units

DBL_DateFormula_2_Str() Converts a DateFormula to a string

DBL_Datetime_2_Str() Converts a Datetime to a string

DBL_Datetime_2_Str_Ex() Converts a Datetime to an extended string

DBL_Datetime_2_YMDHMST() Converts a Datetime to years, months, days, hours,
minutes, seconds and thousandths of a second

DBL_Datetime_2_YMDHMST_Ex() Converts a Datetime to years, months, days, hours,
minutes, seconds and thousandths of a second and
allows you display it as UTC or local time

DBL_Duration_2_Str() Converts a Duration to a string

DBL_HMST_2_Time() Converts time elements to TIME type

DBL_Time_2_HMST() Converts TIME type to time units

DBL_Alpha_2_Str() Converts ALPHA type to string

DBL_Str_2_Alpha() Converts string to ALPHA type

DBL_Date_2_Str() Converts a DATE to a string

DBL_Str_2_Date() Converts a string to a DATE

DBL_Str_2_Field() Converts a string to a field value

DBL_Time_2_Str() Converts TIME to string

DBL_Str_2_Time() Converts string to TIME

DBL_Str_2_DateFormula() Converts a string to DateFormula

DBL_Str_2_Datetime() Converts a string to a Datetime

DBL_Str_2_Datetime_Ex() Converts a string to an extended Datetime

DBL_Str_2_Duration() Converts a string to a Duration

DBL_Str_2_S64() Converts a string to a biginteger

DBL_Ansi2OemBuff() Converts string from ANSI to OEM

DBL_Oem2AnsiBuff() Converts string from OEM to ANSI

DBL_S32_2_S64() Converts an integer to a biginteger

DBL_S64_2_S32() Converts a biginteger to an integer

DBL_S64_2_Str() Converts a biginteger to a string

DBL_YMDHMST_2_Datetime() Converts years, months, days, hours, minutes,
seconds and thousandths of a second to a Datetime

DBL_YMDHMST_2_Datetime_Ex() Converts years, months, days, hours, minutes,
seconds and thousandths of a second to an
extended Datetime
30

4.1 Library Functions Grouped by Use
BCD Functions

Function Purpose

DBL_BCD_2_Str() Converts a BCD number to a string

DBL_Str_2_BCD() Converts a string to a BCD number

DBL_BCD_2_Double() Converts a BCD number to a double

DBL_Double_2_BCD() Converts a double to a BCD number

DBL_BCD_2_S32() Converts a BCD number to an S32

DBL_S32_2_BCD() Converts an S32 to a BCD number

DBL_BCD_IsZero() Tests if a BCD number has a value of 0

DBL_BCD_IsNegative() Tests if a BCD number is negative

DBL_BCD_IsPositive() Tests if a BCD number is positive

DBL_BCD_Div() Divides one BCD number with another BCD number

DBL_BCD_Mul() Multiplies one BCD number by another BCD number

DBL_BCD_Add() Adds two BCD numbers together

DBL_BCD_Sub() Subtracts one BCD number from another BCD
number

DBL_BCD_Abs() Returns the absolute value of a BCD number

DBL_BCD_Neg() Reverses the sign of a BCD number

DBL_BCD_Power() Raises a BCD number to a power.

DBL_BCD_Sgn() Returns the sign of a BCD number

DBL_BCD_Cmp() Compares one BCD number to another BCD number

DBL_BCD_Trunc() Truncates a BCD number

DBL_BCD_Round() Rounds a BCD number

DBL_BCD_RoundUnit() Rounds a BCD number to a unit

DBL_BCD_Make() Returns a BCD number
31

Chapter 4. The Library Functions
Error-Handling and Exception-Handling Functions

Function Purpose

DBL_Allow() Specifies the error to be allowed

DBL_SetExceptionHandler() Installs a custom exception handler

DBL_SetMessageShowHandler() Installs custom message handler

DBL_GetLastErrorCode() Retrieves code of last error
32

4.2 Library Functions in Alphabetical Order
4.2 Library Functions in Alphabetical Order

This section lists all the functions in the C/FRONT library in alphabetical order.

DBL_AddKey()

Function Adds keys and SumIndexFields to a table.

Category Database function.

Syntax void DBL_AddKey(DBL_HCREATE_TABLE hCreateTable, DBL_S32 *Key, DBL_S32
*SumIndexFields);

hCreateTable: A create table handle (see DBL_CreateTableBegin)
Key: Zero-terminated array of the field numbers that you want to constitute
the key
SumIndexFields: Zero-terminated array of the field numbers for which you want
SumIndexFields to be maintained

Remarks The first time you call DBL_ AddKey you create the primary key and the SumIndexFields
that are associated with the primary key. You can then add more keys and
SumIndexFields by making more AddKey calls.

The fields (and the table itself) are not created in the database until you call
DBL_CreateTable.

Example DBL_HCREATE_TABLE hCT;
DBL_S32 TableNo = 50000;
DBL_U8 *TableName = (DBL_U8*)"Sample Table";
DBL_S32 Key[15];
DBL_S32 SumIndexFields[15];

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* create table fields */

Key[0] = 10;
Key[1] = 0;
SumIndexFields[0] = 40;
SumIndexFields[1] = 0;
DBL_AddKey(hCT, Key, SumIndexFields);

DBL_AddTableField()

Function Adds a field to a table.

Category Database function.

Syntax void DBL_AddTableField(DBL_HCREATE_TABLE hCreateTable, DBL_S32 FieldNo,
DBL_U8 *FieldName, DBL_U16 FieldType, DBL_S16 FieldLen, DBL_U8 *OptionStr,
33

Chapter 4. The Library Functions
DBL_S16 FieldClass);

hCreateTable: A create table handle (see CreateTableBegin)
FieldNo: Number of the field to add
FieldName: Name of the field to add
FieldType: Type of the field to add
FieldLen: The length of the field
OptionStr: A comma-separated string of option values
FieldClass: The class of the field

Remarks The FieldType can be one of these constants:

DBL_Type_STR
DBL_Type_DATE
DBL_Type_TIME
DBL_Type_BLOB
DBL_Type_BOOL
DBL_Type_S32
DBL_Type_ALPHA
DBL_Type_O32
DBL_Type_BCD

FieldLen is only relevant for fields of type DBL_Type_STR and DBL_Type_ALPHA.
FieldLen corresponds to the declared length, not the actual length of a field.

The OptionStr should be a string like "a,b,c,d".

FieldClass can be one of these constants:

DBL_Class_Normal
DBL_Class_FlowField
DBL_Class_FlowFilter

DBL_AddTableField adds a field to a table. You must already have acquired a create
table handle by calling DBL_CreateTableBegin. The table will not be created in the
database before you call DBL_CreateTable on the create table handle.

You can create keys and SumIndexFields by using DBL_AddKey.

Example DBL_HCREATE_TABLE hCT;
DBL_S32 TableNo = 50000;
DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);
DBL_AddTableField(hCT, 10, (DBL_U8*)"Decimal Field", DBL_Type_BCD, 0, NULL,
0);
DBL_AddTableField(hCT, 20, (DBL_U8*)"Date Field", DBL_Type_DATE, 0, NULL, 0);
DBL_AddTableField(hCT, 30, (DBL_U8*)"Time Field", DBL_Type_TIME, 0, NULL, 0);

DBL_AllocRec()

Function Creates a record buffer.

Category Record function.
34

4.2 Library Functions in Alphabetical Order
Syntax DBL_HREC DBL_AllocRec(DBL_HTABLE hTable);
hTable: Handle to the table

Remarks DBL_AllocRec creates a record buffer for the specified table handle. If it is successful, a
handle for the record is returned. A record buffer is just an area of memory that has the
same size as a record (including virtual fields – FlowFields and FlowFilters) in the
specified table. Changes to the buffer do not affect the table. You change or add table
records by using DBL_InsertRec, DBL_ModifyRec or DBL_DeleteRec. If sufficient
memory is not available, the function will raise an exception. Always use DBL_FreeRec
to remove the record buffer created by DBL_AllocRec. Never use a C run-time function
for record allocation and deallocation.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Allocate memory for record buffer */
hRec = DBL_AllocRec(hTable);

/* ... */

/* Free memory occupied by record buffer */
DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Allow()

Function Specifies that an error is allowed.

Category Error function.

Syntax void DBL_Allow(DBL_S32 ErrorCode);

ErrorCode can be one of these constants:

DBL_Err_TableNotFound
DBL_Err_RecordNotFound
DBL_Err_RecordExists
DBL_Err_KeyNotFound

Remarks DBL_Allow permits certain library functions to be executed after a specified error has
occurred that would otherwise raise an exception. These functions all have a boolean
35

Chapter 4. The Library Functions
return value. If a call to such a function is successful, the function returns 1. If the
function fails, one of two things can happen:

1 If you have used DBL_Allow to allow the error that causes the function to fail, the
function will return 0.

2 If the error is not allowed, the function will raise an exception and call the exception
handler.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

DBL_Allow stores the number of the allowed error in a global variable, which is reset
when the next library function is called. Always place DBL_Allow immediately before
the function call in which the error is to be allowed. DBL_Allow must be invoked again
if the same error is to be permitted in a subsequent function call.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Allow DBL_FindRec to fail */
DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable,hRec,(DBL_U8*)"-"))
printf("Record was found.\n");
else
printf("Record was NOT found.\n");

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Alpha_2_Str()

Function Converts an ALPHA variable to a string.

Category Conversion function.

Syntax void DBL_Alpha_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_U8* Alpha);
Str: Variable to receive the converted string
StrSize: Size of Str in bytes, including the terminating zero
Alpha: ALPHA string to be converted

Remarks DBL_Alpha_2_Str converts an Alpha variable to a string and stores it in Str. If Str is not
long enough to contain the converted variable, the function raises an exception.
36

4.2 Library Functions in Alphabetical Order
For more information about the ALPHA variable type, see Appendix B.

Example DBL_U8 Alpha[12], Str[11];

DBL_Init();

DBL_Str_2_Alpha(Alpha, sizeof(Alpha), "Number10");
DBL_Alpha_2_Str(Str, sizeof(Str), Alpha);
printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_Ansi2OemBuff

Function Converts characters from ANSI to OEM.

Category Conversion function.

Syntax void DBL_Ansi2OemBuff(const DBL_U8 *Src,DBL_U8 *Dst,DBL_S32 DstSize)

Src: the source
Dst: the destination
DstSize: the number of characters to be converted

Remarks DBL_Ansi2OemBuff converts the character buffer from ANSI to OEM. You must specify
the source buffer the destination buffer and the number of characters. This function
should be used in conjunction with DBL_Oem2AnsiBuff because it can successfully
convert the characters from ANSI to OEM and back again. The comparable Windows
function does not always perform this conversion successfully.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Ansi buffer is allocated room for 10 characters */
DBL_U8 Ansibuff[10];

/* Oem buffer is allocated room for 5 characters */
DBL_U8 Oembuff[5];

/* Copy the string "Hi" to the Ansi buffer */
strcpy(Ansibuff, "Hi")

/* Convert the two character string from ANSI to OEM */
DBL_Ansi2OemBuff(Ansibuff, Oembuff, 2);

DBL_CloseDatabase();
DBL_Exit();

DBL_AssignField()

Function Assigns a value to a field in a record.
37

Chapter 4. The Library Functions
Category Field function.

Syntax void DBL_AssignField(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32 FieldNo,
DBL_U16 Type, void *Data, DBL_S32 DataSize);

hTable: handle to the table
hRec: handle to the record
FieldNo: the field number
Type: the type of the field
Data: pointer to the data
DataSize: size of the data

Remarks DBL_AssignField places the data that is pointed to by the Data pointer in the FieldNo
field of hRec. Note that Data is designed as a void pointer – a pointer to any kind of
data type. DataSize must be set to the size of the data in bytes (for example, as
returned by the C function sizeof).

Example DBL_HTABLE hTable;
DBL_HREC hRec;
char s[100];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);
sprintf(s,”This is some test data”);

DBL_BWT();
DBL_InitRec(hTable,hRec);
DBL_AssignField(hTable,hRec,10,DBL_FieldType(hTable,10),
s,sizeof(s));
DBL_InsertRec(hTable,hRec);
DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_AWT()

Function Aborts a write transaction.

Category Transaction function.

Syntax void DBL_AWT(void);

Remarks DBL_AWT signals the interruption of a write transaction and undoes all of the changes
that have been made in the database since DBL_BWT was issued and unlocks any
locked tables. DBL_BWT must be used before DBL_AWT is called.
38

4.2 Library Functions in Alphabetical Order
For more information about write transactions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Start write transaction */
DBL_BWT();

/* Insert and modify records using hRec and hTable */

/* Abort write transaction */
DBL_AWT();
printf("Table 15 is unchanged\n");

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_BCD_2_Double()

Function Converts a BCD (decimal number) to a double.

Category BCD function.

Syntax void DBL_BCD_2_Double(DBL_DOUBLE* Dest,const DBL_BCD* Source)

Dest: Variable in which the converted BCD is placed
Source: BCD variable to be converted

Remarks DBL_BCD_2_Double converts Source to a double and places the result in Dest.

Example DBL_BCD b1, b2;
double d1, d2;

DBL_Init();

d1 = 12.56789;
DBL_Double_2_BCD(&b1, d1);
DBL_Double_2_BCD(&b2, d1);
DBL_BCD_Round(&b1, 2);
DBL_BCD_Trunc(&b2, 2);
DBL_BCD_2_Double(&d1, &b1);
DBL_BCD_2_Double(&d2, &b2);
if ((d1 != 12.57) || (d2 != 12.56))
return(-1);

DBL_Exit();
39

Chapter 4. The Library Functions
DBL_BCD_2_S32()

Function Converts a BCD (decimal number) to an S32.

Category BCD function.

Syntax DBL_S32 DBL_BCD_2_S32(const DBL_BCD *Source);

Source: BCD variable to be converted

Remarks DBL_BCD_2_S32 converts the BCD variable Source to an S32 value, and returns this
value.

Example DBL_BCD b1;
DBL_S32 s1, s2;

DBL_Init();

s1 = 31415;
DBL_S32_2_BCD(&b1, s1);
s2 = DBL_BCD_2_S32(&b1);

if (s1 != s2)
 return(-1);

DBL_Exit();

DBL_BCD_2_Str()

Function Converts a BCD (decimal number) to a string.

Category BCD function.

Syntax void DBL_BCD_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_BCD* Bcd);

Str: Variable in which the converted BCD is placed
StrSize: Size of Str in bytes, including the terminating zero
Bcd: BCD variable to be converted

Remarks DBL_BCD_2_Str converts Bcd to a string and stores it in Str. The returned string is
formatted according to the format specified in the Windows setup. This means that the
following examples may yield different results, depending on the Windows setup.

Value String

1234 "1234"

-1234 "-1234"

1234.00 "1234"
40

4.2 Library Functions in Alphabetical Order
If Str cannot hold the converted BCD, then Str is filled with '*' characters.

Example DBL_BCD Bcd;
DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_BCD(&Bcd, "-1.2345");
/* Variable Bcd now contains the value -1.2345 */

DBL_BCD_2_Str(Str, sizeof(Str), &Bcd);
/* Variable Str now contains the string value "-1.2345" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_BCD_2_Str(Str, 6+1, &Bcd);
/* Variable Str now contains the string value "******" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_BCD_Abs()

Function Converts a BCD number to the absolute value of the number.

Category BCD function.

Syntax void DBL_BCD_Abs(DBL_BCD *Dest);

Dest: the BCD number to convert

Remarks DBL_BCD_Abs converts the BCD number Dest to the absolute value of that number.

DBL_BCD_Add()

Function Adds two BCD numbers together.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Add(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number
Source: source BCD number

1234.050 "1234.05"

11234.56 "11234.56"

.005 "0.005"

Value String
41

Chapter 4. The Library Functions
Remarks DBL_BCD_Add adds the BCD number Source to the BCD number Dest, and places the
result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Add(DBL_BCD_Add(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst + src) + src1.

DBL_BCD_Cmp()

Function Compares two BCD numbers.

Category BCD function.

Syntax DBL_S32 DBL_BCD_Cmp(const DBL_BCD *Left, const DBL_BCD *Right)

Left: first (left) BCD number to compare
Right: second (right) BCD number to compare

Remarks DBL_BCD_Cmp compares the Left and Right BCD numbers. The return values are:

DBL_BCD_Div()

Function Divides one BCD number with another BCD number.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Div(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number
Source: source BCD number

Remarks DBL_BCD_Div divides the BCD number Dest with the BCD number Source, and places
the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Div(DBL_BCD_Div(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst / src) / src1.

If DBL_BCD_Cmp returns

Left > Right 1

Left < Right -1

Left = Right 0
42

4.2 Library Functions in Alphabetical Order
DBL_BCD_IsNegative()

Function Tests whether a BCD number is negative.

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsNegative(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsNegative tests if the BCD number Source is negative. DBL_BCD_IsNegative
returns TRUE if the BCD number referenced by hBcd has a value less than 0 (zero). If it
does not, DBL_BCD_IsNegative returns FALSE.

DBL_BCD_IsPositive()

Function Tests whether a BCD number is positive.

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsPositive(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsPositive tests if the BCD number Source is positive. DBL_BCD_IsPositive
returns TRUE if the BCD number referenced by hBcd has a value larger than 0 (zero). If
it does not, DBL_BCD_IsPositive returns FALSE.

DBL_BCD_IsZero()

Function Tests if a BCD number has a value of 0 (zero).

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsZero(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsZero tests if the BCD number Source has a value of zero. If Source has a
value of zero, DBL_BCD_IsZero returns TRUE. If it does not, DBL_BCD_IsZero returns
FALSE.
43

Chapter 4. The Library Functions
DBL_BCD_Make()

Function Returns a BCD number.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Make(DBL_BCD *Dest, DBL_S32 Kind);

Dest: the BCD to make
Kind: what BCD number to make

Remarks DBL_BCD_Make creates a valid BCD number, according to the Kind parameter. The
created BCD number is placed in Dest and returned by the function.

The Kind parameter can have the following values:

DBL_BCD_Mul()

Function Multiplies two BCD numbers.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Mul(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number
Source: source BCD number

Remarks DBL_BCD_Mul multiples the BCD number Dest with the BCD number Source, and
places the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Mul(DBL_BCD_Mul(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst * src) * src1.

Kind Created BCD number

DBL_Make_Bcd_0 0

DBL_Make_Bcd_1 1

DBL_Make_Bcd_2 2

DBL_Make_Bcd_10 10

DBL_Make_Bcd_100 100

DBL_Make_Bcd_1024 1024

DBL_Make_Bcd_MIN The BCD with the minimum value (lowest possible)

DBL_Make_Bcd_MAX The BCD number maximum value (highest possible)
44

4.2 Library Functions in Alphabetical Order
DBL_BCD_Neg()

Function Reverses the sign of a BCD number.

Category BCD function.

Syntax void DBL_BCD_Neg(DBL_BCD *Dest);

Dest: BCD number to be converted

Remarks DBL_BCD_neg reverses the sign of the BCD number Dest. For example, -3 becomes 3, 4
becomes -4 and 0 remains 0.

DBL_BCD_Power()

Function Raises a BCD number to a specified power.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Power(DBL_BCD *Dest,const DBL_BCD *Power);

Dest: the BCD number to raise to a power
Power: the power to raise Dest to

Remarks DBL_BCD_Power raises the BCD number Dest to the power Power, and puts the result
in Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Power(DBL_BCD_Power(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst ** src) ** src1.

DBL_BCD_Round()

Function Rounds a BCD number.

Category BCD function.

Syntax void DBL_BCD_Round(DBL_BCD *Dest, DBL_S32 Cnt);

Dest: the BCD number to truncate
Cnt: the number of digits to round Dest to

Remarks DBL_BCD_Round rounds the BCD number Dest to contain Cnt digits.
45

Chapter 4. The Library Functions
Examples:

DBL_BCD_RoundUnit()

Function Rounds a BCD number to a unit.

Category BCD function.

Syntax void DBL_BCD_RoundUnit(DBL_BCD *Dest,const DBL_BCD *Unit,DBL_S32 How);

Dest: the BCD number to round
Unit: the unit to use
How: how to round

Remarks DBL_BCD_RoundUnit rounds Dest according to Unit. The How parameter is used to set
how rounding should occur:

The algorithm of DBL_BCD_RoundUnit can be described like this:

1 The sign of Dest is saved

2 Dest is converted to its absolute value

3 Dest is divided by Unit.

If Unit is Null, the default unit of 0.01 is used. This means that Dest is rounded to 2
decimals.

4 The result is rounded according to How.

5 Dest is multiplied by Unit.

6 The saved sign of Dest is put back in place.

Original BCD number Cnt Result

123.45 1 123.5

123.45 0 123

126.45 -1 130

153.45 -2 200

123.45 -40 0

-123.45 1 -123.5

If How is DBL_BCD_RoundUnit rounds

DBL_BCD_Up Always Up

DBL_BCD_Near To the closest value, Up or Down

DBL_BCD_Down Always Down
46

4.2 Library Functions in Alphabetical Order
The following table shows some examples of this function:

DBL_BCD_Sgn()

Function Returns the sign of a BCD number.

Category BCD function.

Syntax DBL_S32 DBL_BCD_Sgn(const DBL_BCD *Source);

Source: the BCD number to return the sign of

Remarks DBL_BCD_Sgn return the sign of the Source BCD number:

DBL_BCD_Sub()

Function Subtracts one BCD number from another BCD number

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Sub(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number
Source: source BCD number

Remarks DBL_BCD_Sub subtracts the BCD number Source from the BCD number Dest, and puts
the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Sub(DBL_BCD_Sub(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst - src) - src1.

Dest Unit How Result

80 12 DBL_BCD_Up 84

80 12 DBL_BCD_Down 72

80 12 DBL_BCD_Near 84

12.5 10 DBL_BCD_Up 20

If Source is DBL_BCD_sgn returns

> 0 1

< 0 -1

0 0
47

Chapter 4. The Library Functions
DBL_BCD_Trunc()

Function Truncates a BCD number.

Category BCD function.

Syntax void DBL_BCD_Trunc(DBL_BCD *Dest, DBL_S32 Cnt);

Dest: the BCD number to truncate
Cnt: the number of digits to truncate Dest to

Remarks DBL_BCD_trunc truncates the BCD number Dest to contain Cnt digits.

Examples:

DBL_BWT()

Function Begins a write transaction.

Category Transaction function.

Syntax void DBL_BWT(void);

Remarks DBL_BWT marks the beginning of a set of logically related table operations (start of a
transaction). The end of the transaction is signaled by a DBL_EWT or aborted with a
DBL_AWT. Transactions are useful when you need to ensure that tables are not left in
an inconsistent state if an operation in a set of operations fails. Multiple operations can
be performed automatically with transactions.

By placing a set of operations between Begin and End transaction functions, you
ensure that none of the operations are permanently recorded unless all of the
operations are completed successfully.

After calling DBL_BWT, an application is allowed to modify data, using DBL_ModifyRec,
etc. Calling DBL_BWT does not in itself lock the table; other users still have write access.
It is only when your application begins making changes to the table or calls
DBL_LockTable that the table is locked and other applications are refused access.
Locked tables remain locked until either DBL_AWT or DBL_EWT is called.

Original BCD number Cnt Result

123.45 1 123.4

123.45 0 123

123.45 -1 120

123.45 -2 100

123.45 -40 0

-123.45 1 -123.4
48

4.2 Library Functions in Alphabetical Order
For more information about write transactions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Start write transaction */
DBL_BWT();

/* Process hRec and hTable */

/* Commit write transaction */
DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CalcFields()

Function Updates FlowFields in a record.

Category Record function.

Syntax void DBL_CalcFields(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32* FieldList);

hTable: Handle to the table
hRec: Handle to the record whose FlowFields are to be updated
FieldList: Zero-terminated array containing the numbers of the fields in hRec
to be updated

Remarks DBL_CalcFields updates any FlowFields that exist in a record. FlowFields are a special
C/SIDE feature that provide information from other tables in the database.

They are also known as virtual fields because their values are not saved with the table.
FlowFields are only updated when DBL_CalcFields is called. For example, FlowFields in
records that are accessed with DBL_FindRec and DBL_NextRec are set to zero.
DBL_CalcFields must be called to update the values in the FlowFields.

A detailed explanation and illustration of FlowFields is available in the Application
Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S32 Fields[11];

DBL_Init();
49

Chapter 4. The Library Functions
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Update value in field 5 (a FlowField) in hRec */
/* Causes an exception if field 5 is not a FlowField */
Fields[0] = 5;
Fields[1] = 0; /* Remember to zero-terminate strings */
DBL_CalcFields(hTable, hRec, Fields);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CalcSums()

Function Sums up totals for selected fields.

Category Table function.

Syntax void DBL_CalcSums(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32* FieldList);

hTable: Handle to the table
hRec: Handle to the record buffer in which sums are to be placed
FieldList: Zero-terminated array containing the numbers of the fields to be
added up

Remarks DBL_CalcSums adds up totals for specific fields (columns) in a table. The function
operates only on those records that meet the conditions specified in any filters that are
associated with the table handle.

All of the fields listed in FieldList must be designated in the current key as
SumIndexFields. If any of them do not meet this criteria, an exception is raised. To
retrieve a list of the SumIndexFields for a given key, call DBL_KeySumFields.

SumIndexFields are a special C/SIDE feature that give speedy access to numeric totals.
SumIndexFields also work in tables that contain many thousands of records.

For more information about SumIndexFields, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S32 Fields[DBL_MaxSumFieldsPerKey+1];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

Fields[0] = 4;
Fields[1] = 0;
50

4.2 Library Functions in Alphabetical Order
DBL_CalcSums(hTable, hRec, Fields);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CheckLicenseFile()

Function Checks whether the license file that is currently in use contains permissions for a
specified object.

Category Database function.

Syntax void DBL_CheckLicenseFile(DBL_S32 ObjectNo);

ObjectNo: number of the object to check permissions for

Remarks The permissions for the object specified by ObjectNo are checked against the license
file. If the required permissions are not specified in the license file, an error (which you
will have to handle) occurs.

Example DBL_CheckLicenseFile(9110); /* C/FRONT license check */

DBL_CloseCompany()

Function Closes the company that is currently open.

Category Database function.

Syntax void DBL_CloseCompany(void);

Remarks DBL_CloseCompany closes the company that was opened by DBL_OpenCompany. You
must close any tables that are open before calling this function.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company. */
/* Causes an exception if "Test Company" does not exist */
DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* ... */

/* Close company */
DBL_CloseCompany();
51

Chapter 4. The Library Functions
DBL_CloseDatabase();
DBL_Exit();

DBL_CloseDatabase()

Function Closes the database that is open.

Category Database function.

Syntax void DBL_CloseDatabase(void);

Remarks Closes the database that was opened by DBL_OpenDatabase. DBL_CloseDatabase will
raise an exception if there are any open tables or allocated records (see
DBL_ReleaseAllObjects).

Example DBL_Init();

/* Open database using 2000 Kb cache */
/* Causes an exception if database MY DB does not exist */
/* Causes an exception if 2000 Kb cache cannot be allocated */
DBL_OpenDatabase("MY DB.fdb", 2000, 0);

/* ... */

/* Close database */
DBL_CloseDatabase();

DBL_Exit();

DBL_CloseTable()

Function Closes the specified table.

Category Table function.

Syntax void DBL_CloseTable(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_CloseTable deletes a handle to a table that was opened by DBL_OpenTable and
frees the memory occupied by such things as filters. hTable is no longer a valid handle
after this operation has been called.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();
52

4.2 Library Functions in Alphabetical Order
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");

/* Open table */
/* Causes an exception if table 15 does not exist */
DBL_OpenTable(&hTable, 15);

/* ... */

/* Close table */
DBL_CloseTable(hTable);

/* Open table */
DBL_Allow(DBL_Err_TableNotFound);
if (DBL_OpenTable(&hTable, 16))
{
printf("Table opened\n");

/* ... */

/* Close table */
DBL_CloseTable(hTable);
}
else
printf("Table does not exist\n");

DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CmpRec()

Function Compares two records.

Category Record function.

Syntax DBL_BOOL DBL_CmpRec(DBL_HTABLE hTable, const DBL_HREC hDstRec, const DBL_HREC
hSrcRec);

hTable: handle to the table
hDstRec: handle to a record
hSrcRec: handle to the record to compare hDstRec against

Remarks hDstRec and hSrcRec must be handles to records from the same table. If the contents
of the records are the same, the function returns TRUE. If the contents are not the
same, it returns FALSE.

Example DBL_HTABLE hTable;
DBL_HREC hDstRec;
DBL_HREC hSrcRec;
char a[100];
char b[100];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
53

Chapter 4. The Library Functions
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hDstRec = DBL_AllocRec(hTable);
hSrcRec = DBL_AllocRec(hTable);
sprintf(a,"Some data");
sprintf(b,"Some other data");

/* Assign values to the fields of the two records. */
DBL_InitRec(hTable,hDstRec);
DBL_InitRec(hTable,hSrcRec);
DBL_AssignField(hTable,hDstRec,10,DBL_Type_STR,a,sizeof(a));
DBL_AssignField(hTable,hSrcRec,10,DBL_Type_STR,b,sizeof(b));

/* Then, compare the records: */
if (DBL_CmpRec(hTable,hDstRec,hSrcRec))
printf("The records are identical\n");
else
printf("The records are NOT identical\n");

DBL_FreeRec(hDstRec);
DBL_FreeRec(hSrcRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CompanyName()

Function Retrieves the name of the company that is currently open.

Category Database function.

Syntax const DBL_U8* DBL_CompanyName(void);

Remarks DBL_CompanyName returns the CompanyName of the company that was opened by
DBL_OpenCompany. The returned value is a pointer to a string that contains the
current CompanyName. If DBL_OpenCompany has not been called, the function
returns a pointer to an empty string.

You cannot select another CompanyName with this function. You must use
DBL_CloseCompany and DBL_OpenCompany to change to another company.
Companies can only be created and deleted in C/SIDE.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company */
/* Causes an exception if "Test Company" does not exist */
DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* Close company */
DBL_CloseCompany();
54

4.2 Library Functions in Alphabetical Order
DBL_CloseDatabase();
DBL_Exit();

DBL_ConnectServerandOpenDatabase()

Function Connects to a server and opens a database.

Category Database function.

Syntax void DBL_ConnectServerandOpenDatabase(DBL_U8* NDBCDriverName, DBL_U8*
ServerName, DBL_U8* NetType, DBL_U8* DatabaseName, DBL_S32 CacheSize DBL_BOOL
UseCommitCache, DBL_Bool UseNTAuthentication, DBL_U8* UserID, DBL_U8*
PassWord);

NDBCDriverName: "NDBCS": The Microsoft SQL Server driver
 "NDBCN": The C/SIDE Database Server driver

ServerName: Name of the server

NetType: "Default": use the default Net Type for network communication
"Named Pipes": use Named Pipes for network communication
"TCP/IP Sockets": use TCP/IP Sockets for network communication
"Multiprotocol": use Multiprotocol for network communication

DatabaseName: Name of the database to open

CacheSize: Size of cache in KB

UseCommitCache: Whether to use CommitCache or not

UseNTAuthentication: Whether to use NT Authentication or not

UserID: Login name

PassWord: Password belonging to UserID

Remarks You must use this function with the SQL Server Option for Dynamics NAV and we
recommend that you also use it with C/SIDE Database Server. It must be used with the
SQL Server Option for Microsoft Dynamics NAV because SQL Server demands that you
open the server, the database and provide authentication at the same time.

The Net Type you select is dependent on the server you are using:

Server: Value: Net Type:

SQL Server Named Pipes Named Pipes

TCP/IP Sockets TCP/IP Sockets

Multiprotocol Multiprotocol

Default Default Net Type
55

Chapter 4. The Library Functions
The driver you select is dependent on the server you are using.

SQL Server The server must be running when you issue this call. All succeeding calls to the
database will be passed to the server, which will execute the operations.

If you are using SQL Server you still have to enter a zero value for CacheSize and
UseCommitCache even though they only apply to the C/SIDE Database Server.

If you select NT Authentication (UseNTAuthentication=1) then you do not have to
supply a user ID or a password. However, you do have to enter two empty sets of
quotes ("") in order to comply with the syntax.

Issue this call again to open another database. You can only open the databases to
which you have been granted permission.

C/SIDE Database
Server

This function connects with a server and opens a database with a cache of the
CacheSize you have specified. The server must be running when you issue this call. All
succeeding calls to access the database are passed to the server, which will execute the
operations.

A cache is an area of RAM that holds the results of recent disk accesses. CacheSize
specifies the amount of memory assigned to the disk cache. The size depends upon
which operating system is in use. As a general rule, the larger the cache, the better the
performance. For more information, see the Installation and System Management:
C/SIDE Database Server for Microsoft Dynamics NAV manual.

If you are using the C/SIDE Database Server and do not specify a server name
(ServerName=0) the application will search for the database file on your local
computer and open it, if it can be found.

If you select NT Authentication (UseNTAuthentication=1) then you do not have to
supply a user ID or a password. However you do have to enter two empty sets of
quotes ("") in order to comply with the syntax.

To close the connection to a database server, call DisconnectServer.

An application can only be connected to one server at a time.

Example SQL Server

DBL_Init();
/* Connect to TestServer using Named Pipes and NT Authentication */

DBL_ConnectServerandOpenDatabase("NDBCS", "TestServer",
"Named Pipes", "test.fdb", 0, 0, 1, "", "");

/* Causes an exception if TestServer is not connectable*/
/* Causes an exception if database test.fdb does not exist*/
/* Causes an exception if the NT login does not give the user access to this
server*/

C/SIDE Database Server tcp TCP/IP

tcps TCPS

netb NetBIOS

Server: Value: Net Type:
56

4.2 Library Functions in Alphabetical Order
/*CacheSize and UseCommitCache do not apply to SQL Server*/
/*Using NT Authentication means that you do not need to enter a UserID and
Password*/

/*...*/
/* Disconnect from server */
DBL_DisconnectServer();
DBL_Exit();

C/SIDE Database Server

DBL_Init();
/* Connect to the C/SIDE Database Server "TestServer" using NetBIOS and
open testdb using 3000Kb cache, commitcache, not using NT Authentication and
therefore providing a user ID and password*/
DBL_ConnectServerandOpenDatabase("NDBCN", "TestServer", "netb", "test.fdb",
3000, 1, 0, "MyUserID", "MyPassword");

/* Causes an exception if TestServer is not connectable*/
/* Causes an exception if database test.fdb does not exist*/
/* Causes an exception if 3000 KB cannot be allocated*/
/* Causes an exception if UserID is not correct*/
/* Causes an exception if password is not correct*/

/* ...*/
/* Disconnect from server */
DBL_DisconnectServer();

DBL_Exit();

DBL_ConnectServer()

Function Connects to a database server.

Category Database function.

Syntax void DBL_ConnectServer(DBL_U8* ServerName, DBL_U8* NetType);

ServerName: name of the server to connect to

NetType: "netb": use NetBIOS for network communication
"tcp": use TCP/IP for network communication

Remarks The server must be running when you issue this call. All succeeding calls to access the
database will be passed to the server, which will execute the operations.

This function is applicable only in a multiuser configuration.

To close the connections to a database server, call DBL_DisconnectServer.

An application can be connected to only one server at a time; use
DBL_DisconnectServer before connecting to another. Applications can switch between
a server connection and a locally-opened database (you can alternate between
57

Chapter 4. The Library Functions
DBL_ConnectServer and DBL_OpenDatabase); remember to close the existing
connection before making the switch.

If an error occurs, the function will raise an exception and call the exception handler.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

Example DBL_Init();

/* Connect to TestServer using NetBIOS */
/* Causes an exception if TestServer is not connectable */
DBL_ConnectServer("TestServer", "netb");

/* ...*/
/* Disconnect from server */
DBL_DisconnectServer();

DBL_Exit();

DBL_CopyRec()

Function Copies a record.

Category Record function.

Syntax void DBL_CopyRec(DBL_HTABLE hTable, DBL_HREC hDstRec, const DBL_HREC
hSrcRec);

hTable: handle to the table
hDstRec: handle to the record to copy to
hSrcRec: handle to the record to copy from

Remarks DBL_CopyRec copies the contents of one record to another record. hSrcRec and
hDstRec must be handles to records from the same table.

Example DBL_HTABLE hTable;
DBL_HREC hDstRec;
DBL_HREC hSrcRec;
char s[100];
DBL_S32 num;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hDstRec = DBL_AllocRec(hTable);
hSrcRec = DBL_AllocRec(hTable);
sprintf(s,"New data");

DBL_BWT();
/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* And copy it: */
DBL_CopyRec(hTable,hDstRec,hSrcRec);
58

4.2 Library Functions in Alphabetical Order
/* Process hDstRec, and insert it into the table: */
num = 4711;
DBL_AssignField(hTable,hDstRec,1,DBL_FieldType(hTable,1),
num,sizeof(DBL_S32));
DBL_AssignField(hTable,hDstRec,10,DBL_FieldType(hTable,10),
s,sizeof(s));
DBL_InsertRec(hTable,hDstRec);
DBL_EWT();

DBL_FreeRec(hDstRec);
DBL_FreeRec(hSrcRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_CreateTable()

Function Creates a database table.

Category Database function

Syntax DBL_BOOL DBL_CreateTable(DBL_HCREATE_TABLE hCreateTable)

hCreateTable: Create table handle

Remarks DBL_CreateTable creates a table in a Dynamics NAV database. Before using
DBL_CreateTable you have to acquire a create table handle by using
DBL_CreateTableBegin, and add fields and keys with DBL_AddTableField and
DBL_AddKey.

DBL_CreateTable returns TRUE if the table is created successfully and FALSE if it is not
created. When creating the table fails, the error handler is called.

If you use DBL_CreateTableEnd without using DBL_CreateTable, the table will not be
created.

Example DBL_HCREATE_TABLE hCT;
DBL_S32 TableNo = 50000;
DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */

DBL_CreateTable(hCT);
DBL_CreateTableEnd(hCT);
59

Chapter 4. The Library Functions
DBL_CreateTableBegin()

Function Creates a create table handle.

Category Database function.

Syntax DBL_CreateTableBegin(DBL_HCREATE_TABLE *phCreateTableRef, DBL_S32 TableNo,
DBL_U8 *TableName, DBL_BOOL DataPerCompany);

phCreateTableRef: create table handle
TableNo: number of the table
TableName: name of the table
DataPerCompany: if FALSE, data in the table will be available to all
companies in the database; if TRUE, it will only be available to the currently
selected company.

Remarks DBL_CreateTableBegin creates a create table handle. After you have created this
handle, you can use DBL_AddTableField and DBL_AddKey to add fields and keys to the
table. When you have finished defining fields and keys, you use DBL_CreateTable to
create the table in C/SIDE.

When the table has been created with DBL_CreateTable, you must close the create
table handle with DBL_CreateTableEnd. If you use DBL_CreateTableEnd without using
DBL_CreateTable first, the table will not be created.

Example DBL_HCREATE_TABLE hCT;
DBL_S32 TableNo = 50000;
DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */

DBL_CreateTable(hCT);
DBL_CreateTableEnd(hCT);

DBL_CreateTableEnd()

Function Closes a create table handle.

Category Database function.

Syntax DBL_CreateTableEnd(DBL_HCREATE_TABLE hCreateTable);

hCreateTable: Create table handle.

Remarks DBL_CreateTableEnd closes the create table handle that hCreateTable acquired by
calling DBL_CreateTableBegin.

If you have not called DBL_CreateTable, any fields and keys you may have defined with
DBL_AddTableField and DBL_AddKey will be lost.
60

4.2 Library Functions in Alphabetical Order
Example DBL_HCREATE_TABLE hCT;
DBL_S32 TableNo = 50000;
DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */

DBL_CreateTable(hCT);
DBL_CreateTableEnd(hCT);

DBL_CryptPassword()

Function Encrypts the password.

Category Password function

Syntax DBL_CryptPassword(const DBL_U8 *UserID, DBL_U8 *PassWord)

UserId: the user ID
PassWord: the clear-text password

Remarks DBL_CryptPassword encrypts a password, if you have supplied a user ID and a clear-
text version of the password. The result is placed in PassWord.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 *UserID = (DBL_U8*)"UID";
DBL_U8 UserIDCode[12];
DBL_U8 Password[11];
DBL_U8 *EncryptedPassword;

printf("Testing login functions ..");
strcpy((char*)Password,"Password");
DBL_Login(UserID, Password);
DBL_OpenTable(&hTable, 2000000002); /* 'User' table */
hRec = DBL_AllocRec(hTable);
DBL_InitRec(hTable, hRec);
DBL_BWT();
DBL_DeleteRecs(hTable);
DBL_EWT();

DBL_Str_2_Alpha(UserIDCode, sizeof(UserIDCode), UserID);

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),UserIDCode,strlen((cha
r*)UserID)+2);

DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),Password,
strlen((char*)Password)+1);

DBL_BWT();
DBL_InsertRec(hTable, hRec);
DBL_EWT();
DBL_InitRec(hTable, hRec);
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");
61

Chapter 4. The Library Functions
EncryptedPassword =
(DBL_U8*)DBL_GetFieldDataAddr(hTable, hRec, 2);
DBL_CryptPassword(UserIDCode, Password);

if (0 != memcmp(EncryptedPassword, Password, strlen((char*)Password)))
{
DBL_CloseTable(hTable);
printf("Login functions \nError !");
return(-1);
}

DBL_BWT();
DBL_DeleteRecs(hTable);
DBL_EWT();
DBL_CloseTable(hTable);
printf("OK\n");

DBL_Date_2_Str()

Function Converts a DATE element to a string.

Category Conversion function

Syntax void DBL_Date_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_DATE Date);

Str: the string in which to place the converted DATE
StrSize: the size of the destination string
Date: the DATE element to convert

Remarks DBL_Date_2_Str converts the DATE value in Date to a string. StrSize is the size of the
destination string, in effect, the number of bytes to place in Str. It is your own
responsibility to ensure that the converted value will not be truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_DATE *pDate;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pDate from field 20: */
pDate = (DBL_DATE*)DBL_GetFieldDataAddr(hTable,hRec,20);
/* Convert pDate to a string: */
DBL_Date_2_Str(resStr,sizeof(resStr),*pDate);
/* Print out the string: */
printf("Date as string: %s\n", resStr);

DBL_FreeRec(hRec);
62

4.2 Library Functions in Alphabetical Order
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Date_2_YMD()

Function Converts a DATE variable to year, month, day.

Category Conversion function.

Syntax void DBL_Date_2_YMD(DBL_S32* y, DBL_S32* m, DBL_S32* d,
DBL_BOOL* Closing, DBL_DATE Date);

y: Variable to receive the value for year
m: Variable to receive the value for month
d: Variable to receive the value for day
Closing: 1 if the Date value is designated as a closing date,
otherwise 0
Date: DATE variable to be converted

Remarks DBL_Date_2_YMD dismantles a DATE variable to create separate values for year, month
and day.

Any of the four output variables (y, m, d or Closing) can be set to NULL if they are not
needed.

If this function is called with Date=zero (undefined), an exception is raised. To prevent
this occurring, test the value of the Date variable before making this call.

Example DBL_DATE Date;
DBL_S32 y,m,d;
DBL_BOOL c;

DBL_Init();

DBL_YMD_2_Date(&Date, 1996, 5, 17, 0);
/* Variable Date now contains the date May 17, 1996 */

DBL_Date_2_YMD(&y, &m, &d, &c, Date);
printf("y,m,d and c now contain %d, %d, %d and %d\n",y,m,d,c);

DBL_Exit();

DBL_DateFormula_2_Str()

Function Converts a DateFormula to a string.

Category Conversion function

Syntax void DBL_DateFormula_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_DATEFORMULA
DateFormula);
63

Chapter 4. The Library Functions
Str: the string in which to place the converted DATEFORMULA
StrSize: the size of the destination string
DateFormula: the DATEFROMULA to convert

Remarks DBL_DateFormula_2_Str converts the DATEFORMULA value in DateFormula to a string.
StrSize is the size of the destination string, in effect, the number of bytes to place in Str.
It is your own responsibility to ensure that the converted value will not be truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_DATEFORMULA *pDateFormula;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pDateFormula from field 20: */
pDateFormula = (DBL_DATEFORMULA*)DBL_GetFieldDataAddr(hTable,hRec,20);
/* Convert pDateFormula to a string: */
DBL_DateFormula_2_Str(resStr,sizeof(resStr),*pDateFormula);
/* Print out the string: */
printf("DateFormula as string: %s\n", resStr);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Datetime_2_Str()

Function Converts a Datetime to a string.

Category Conversion function

Syntax void DBL_Datetime_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_DATETIME Datetime);

Str: the string in which to place the converted DATETIME
StrSize: the size of the destination string
Datetime: the DATETIME to convert

Remarks DBL_Datetime_2_Str converts the DATETIME value in Datetime to a string. StrSize is the
size of the destination string, in effect, the number of bytes to place in Str. It is your
own responsibility to ensure that the converted value will not be truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_DATETIME *pDatetime;
64

4.2 Library Functions in Alphabetical Order
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pDatetime from field 20: */
pDatetime = (DBL_DATETIME*)DBL_GetFieldDataAddr(hTable,hRec,20);
/* Convert pDatetime to a string: */
DBL_Datetime_2_Str(resStr,sizeof(resStr),*pDatetime);
/* Print out the string: */
printf("Datetime as string: %s\n", resStr);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Datetime_2_Str_Ex()

Function Converts a Datetime to an extended string.

Category Conversion function

Syntax void DBL_Datetime_2_Str_Ex(DBL_U8 *Str, DBL_S16 StrSize, DBL_DATETIME
Datetime);

Str: the string in which to place the converted DATETIME
StrSize: the size of the destination string
Datetime: the DATETIME to convert

Remarks DBL_Datetime_2_Str_Ex converts the DATETIME value in Datetime to an extended
string. StrSize is the size of the destination string, in effect, the number of bytes to place
in Str. It is your own responsibility to ensure that the converted value will not be
truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_DATETIME *pDatetime;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pDatetime from field 20: */
pDatetime = (DBL_DATETIME*)DBL_GetFieldDataAddr(hTable,hRec,20);
/* Convert pDatetime to a string: */
65

Chapter 4. The Library Functions
DBL_Datetime_2_Str_Ex(resStr,sizeof(resStr),*pDatetime);
/* Print out the string: */
printf("Datetime as string: %s\n", resStr);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Datetime_2_YMDHMST()

Function Converts a DATETIME variable to years, months, days, hours, minutes, seconds and
thousandths of a second.

Category Conversion function

Syntax void DBL_Datetime_2_YMDHMST(DBL_s32* y, DBL_s32* m, DBL_s32* d, DBL_s32* h,
DBL_s32* m, DBL_s32* s, DBL_s32* t, DBL_DATETIME Datetime);

Y: Variable to receive the value for years.
m: Variable to receive the value for months.
d: Variable to receive the value for days.
h: Variable to receive the value for hours.
m: Variable to receive the value for minutes.
s: Variable to receive the value for seconds.
t: Variable to receive the value for thousandths of a second.
Datetime: the DATETIME variable to convert

Remarks DBL_Datetime_2_YMDHMST dismantles a DATETIME variable and creates values for
years, months, days, hours, minutes, seconds and thousandths of a second.

Any of the output variables (ymdhmst) can be set to null, if they are not needed.

If this function is called with DATETIME= zero (undefined), an exception is raised. To
prevent this occurring, test the value of the Datetime variable before calling this
function.

Example DBL_DATETIME Datetime;
DBL_s32 y,m,d,h,m,s,t;

DBL_INIT();

DBL_YMDHMST_2_Datetime(&Datetime, 2005, 5, 17, 14, 30, 45, 1);
/* Variable Datetime now contains the datetime May 17, 2005, 14:30:45.1 */

DBL_Datetime_2_YMDHMST(&y, &m, &d, &h, &m, &s, &t, Datetime);
/* Variables y,m,d,h,m,s and t now contain 2005, 5, 17, 14, 30, 45 and 1 */
printf("y,m,d,h,m,s and t now contain %d, %d, %d, %d, %d, %d and
%d\n",y,m,d,h,m,s,t);

DBL_Exit();
66

4.2 Library Functions in Alphabetical Order
DBL_Datetime_2_YMDHMST_Ex()

Function Converts a DATETIME variable to years, months, days, hours, minutes, seconds and
thousandths of a second

Category Conversion function

Syntax void DBL_Datetime_2_YMDHMST_Ex(DBL_S32 y, DBL_S32 m, DBL_S32 d, DBL_S32 h,
DBL_S32 m, DBL_S32 s, DBL_S32 f, DBL_Datetime Datetime, DBL_BOOL
UTC_Time);

Y: Variable to receive the value for years.
m: Variable to receive the value for months.
d: Variable to receive the value for days.
h: Variable to receive the value for hours.
m: Variable to receive the value for minutes.
s: Variable to receive the value for seconds.
t: Variable to receive the value for thousandths of a second.
Datetime: the DATETIME variable to convert
UTC_Time: whether or not to use UTC Time

Remarks DBL_Datetime_2_YMDHMST_Ex dismantles a DATETIME variable and creates values for
years, months, days, hours, minutes, seconds and thousandths of a second. It also
allows you to specify if it should be displayed in UTC time or in local time.

Any of the output variables (ymdhmst) can be set to null, if they are not needed.

If this function is called with DATETIME= zero (undefined), an exception is raised. To
prevent this occurring, test the value of the Datetime variable before calling this
function.

Example DBL_DATETIME Datetime;
DBL_s32 y,m,d,h,m,s,t;

DBL_INIT();

DBL_YMDHMST_2_Datetime(&Datetime, 2005, 5, 17, 14, 30, 45, 1);
/* Variable Datetime now contains the datetime May 17, 2005, 14:30:45.1 */

DBL_Datetime_2_YMDHMST_Ex(&y, &m, &d, &h, &m, &s, &t, Datetime, TRUE);
/* Variables y,m,d,h,m,s and t now contain 2005, 5, 17, 14, 30, 45 and 1 */
printf("y,m,d,h,m,s and t now contain %d, %d, %d, %d, %d, %d and
%d\n",y,m,d,h,m,s,t);

DBL_Exit();

DBL_DeleteRec()

Function Deletes a record from a table.

Category Record function.
67

Chapter 4. The Library Functions
Syntax DBL_BOOL DBL_DeleteRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table
hRec: Handle to the record to be deleted. hRec itself does not change.

Remarks DBL_DeleteRec deletes a record from an open table. The current key and any filters
bound to the table handle have no effect on this operation. The record to be deleted is
identified only by the values in its primary key.

In a multiuser environment, another application can delete the record from the table in
the interval between your reading the record and your attempt to delete it. The C/SIDE
database system automatically detects such an event, causing DBL_DeleteRec to raise
an exception.

To prevent this from happening, use DBL_LockTable to lock the table before reading
the record. Remember, however, that the table will be locked for the time that elapses
between reading and deleting the record, and that other users will therefore be unable
to access it.

For more information about table locking, see the Application Designer’s Guide.

If the record is successfully deleted, 1 is returned. If the record is not found in the table,
two things can happen:

1 If this result has been allowed by the function:
DBL_Allow(DBL_Err_RecordNotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

DBL_DeleteRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
68

4.2 Library Functions in Alphabetical Order
DBL_DeleteRecs()

Function Deletes all of the records in a table.

Category Record function.

Syntax DBL_DeleteRecs(DBL_HTABLE hTable)

hTable: handle to the table

Remarks DBL_DeleteRecs deletes all of the records in the table referenced by hTable.
DBL_DeleteRecs must be used inside a transaction.

Example DBL_HTABLE hTable;

DBL_OpenTable(&hTable, 123456);
DBL_BWT();
DBL_DeleteRecs(hTable);
DBL_EWT();
DBL_CloseTable(hTable);

DBL_DeleteTable()

Function Deletes a table from a database.

Category Database function.

Syntax DBL_BOOL DBL_DeleteTable(DBL_S32 TableNo);

TableNo: the number of the table to delete

Remarks DBL_DeleteTable deletes the table with table number TableNo from the database. If
the table was found and it could be deleted, DBL_DeleteTable returns TRUE.

If DBL_DeleteTable returns FALSE, an error has occurred. This means that either the
table could not be found or that the table was locked. When DBL_DeleteTable returns
FALSE, the error handler is called.

DBL_DisconnectServer()

Function Disconnects from a database server.

Category Database function.

Syntax void DBL_DisconnectServer(void);
69

Chapter 4. The Library Functions
Remarks DBL_DisconnectServer disconnects an application from a database server. The
connection must have been established by calling DBL_ConnectServer.

Example DBL_Init();

/* Connect to TestServer using NetBIOS */
/* Causes an exception if TestServer is not connectable */
DBL_ConnectServer("TestServer", "netb");

/* Disconnect from server */
DBL_DisconnectServer();

DBL_Exit();

DBL_Double_2_BCD()

Function Converts a BCD (decimal number) to a double.

Category BCD function.

Syntax void DBL_Double_2_BCD(DBL_BCD *Dest,DBL_DOUBLE Source)

Dest: Variable in which the converted double is placed
Source: double variable to be converted

Remarks DBL_Double_2_BCD converts Source to a BCD and places the result in Dest.

Example DBL_BCD b1, b2;
double d1, d2;

DBL_Init();

d1 = 12.56789;
DBL_Double_2_BCD(&b1, d1);
DBL_Double_2_BCD(&b2, d1);
DBL_BCD_Round(&b1, 2);
DBL_BCD_Trunc(&b2, 2);
DBL_BCD_2_Double(&d1, &b1);
DBL_BCD_2_Double(&d2, &b2);
if ((d1 != 12.57) || (d2 != 12.56))
return(-1);

DBL_Exit();

DBL_DupRec()

Function Duplicates a record in a table

Category Record function

Syntax DBL_HREC DBL_DupRec(DBL_HTABLE hTable, DBL_HREC hSrcRec);
70

4.2 Library Functions in Alphabetical Order
hTable: Handle to the table
hSrcRec: Handle to the record to be duplicated

Remarks This function returns a handle to the new record that is created.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_HREC hRecDuplicate;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Look up first record */
/* Causes an exception if table 15 is empty */
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Make a copy of the first record */
hRecDuplicate = DBL_DupRec(hTable, hRec);
....

DBL_FreeRec(hRecDuplicate);
DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Duration_2_Str()

Function Converts a Duration to a string.

Category Conversion function

Syntax void DBL_Duration_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_DURATION);

Str: the string in which to place the converted DURATION
StrSize: the size of the destination string
DateFormula: the DURATION to convert

Remarks DBL_Duration_2_Str converts the DURATION value in Duration to a string. StrSize is the
size of the destination string, in effect, the number of bytes to place in Str. It is your
own responsibility to ensure that the converted value will not be truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_DURATION *pDuration;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
71

Chapter 4. The Library Functions
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pDuration from field 20: */
pDuration = (DBL_DURATION*)DBL_GetFieldDataAddr(hTable,hRec,20);
/* Convert pDuration to a string: */
DBL_Duration_2_Str(resStr,sizeof(resStr),*pDuration);
/* Print out the string: */
printf("Duration as string: %s\n", resStr);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_EWT()

Function Ends a write transaction.

Category Transaction function.

Syntax void DBL_EWT(void);

Remarks DBL_EWT signals the end of a transaction. It completes the ongoing transaction and
makes the appropriate changes to the tables. All modifications that have been made to
the database since DBL_BWT was called are committed, and any locked tables are
unlocked.

A call to DBL_BWT must precede a call to DBL_EWT. An application cannot abort a
transaction after a DBL_EWT operation.

For more information about write transactions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Start write transaction */
DBL_BWT();

/* Insert and modify records */

/* Commit write transaction */
DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
72

4.2 Library Functions in Alphabetical Order
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Exit()

Function Closes the C/FRONT environment.

Category Initializing function.

Syntax void DBL_Exit(void);

Remarks DBL_Exit closes the single-user or network C/FRONT environment that was previously
opened with DBL_Init. DBL_Exit aborts any outstanding write transactions, removes any
table locks, closes any open tables and frees internal buffer areas and internal tables.

DBL_Init must have been called before this function is used.

Example void main(int argc, char* argv[], char* envp[])
{
DBL_Init();

/* A database can now be opened or */
/* a connection to a server established */

DBL_Exit();
}

DBL_Field_2_Str()

Function Converts a value in a field to a string.

Category Conversion function.

Syntax void DBL_Field_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_HTABLE hTable,
DBL_HREC hRec, DBL_S32 FieldNo);

Str: Variable in which the converted field will be placed
StrSize: Size of Str in bytes, including the terminating zero
hTable: Handle to the table
hRec: Handle to the record containing the field to be converted
FieldNo: Number of the field containing the value to be converted

Remarks DBL_Field_2_Str converts the contents of FieldNo in hRec to a zero-terminated ASCII
string and places it in Str. The field represented by FieldNo may be of any type.

If Str is too short to hold the converted string, the converted string is truncated from
the right. If FieldNo is of type integer, large integer or decimal, Str is filled with '*'
characters.
73

Chapter 4. The Library Functions
Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 Str[11];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Let's assume that: */
/* Field 10 in hRec is a BCD type field containing 1.23456 */
/* Field 11 in hRec is a TEXT type field containing */
/* "This is a test" */

DBL_Field_2_Str(Str, 6+1, hTable, hRec, 10);
/* Variable Str now contains the string value "******" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_Field_2_Str(Str, 7+1, hTable, hRec, 11);
/* Variable Str now contains the string value "This is" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldCaption()

Function Returns the caption for a specific field in a table.

Category Field function

Syntax DBL_U8* DBL_FieldCaption(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: The number of the field whose caption you want returned

Remarks This function returns the caption of the field identified by FieldNo in the table.

This function cannot be used to change the caption of the field. Field captions are
defined in C/SIDE.

If no field exists with the number specified in FieldNo, the function will raise an
exception. Because the field number is returned as a pointer, it (the pointer) is only
valid while the handle to the table is open.

For more information about fields, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_Init();
74

4.2 Library Functions in Alphabetical Order
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
/* Retrieve information about field 3 in table 15 */
/* Causes an exception if field 3 does not exist in table 15 */
printf("Field name is %s\n", DBL_FieldName(hTable, 3));
printf("Field caption is %s\n", DBL_FieldCaption(hTable, 3));
printf("Field type is %d\n", DBL_FieldType(hTable, 3));
printf("Field size is %d\n", DBL_FieldSize(hTable, 3));
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldClass()

Function Retrieves the class of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldClass(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose class is to be determined

Remarks There are three different classes of fields: Normal, FlowField or FlowFilter.
DBL_FieldClass returns the class of the field with the number specified in FieldNo.

If the number specified in FieldNo does not exist, the function will raise an exception.

The value returned by DBL_FieldClass is one of the three constants:

DBL_Class_Normal
DBL_Class_FlowField
DBL_Class_FlowFilter

These constants are listed in Appendix A.

While ordinary fields are stored in the database, FlowFields are virtual fields that
contain information about other tables in the database and are not saved with the
table. To update the FlowFields you must call DBL_CalcFields.

FlowFilter fields are also virtual fields. The values in FlowFilter fields are used as
parameters for calculating FlowFields.

For more information about field classes see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_S16 Class;

DBL_Init();
DBL_OpenDatabase("test-fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
75

Chapter 4. The Library Functions
/* Retrieve class of field 3 */
Class = DBL_FieldClass(hTable, 3);

if (Class == DBL_Class_Normal)
printf("Field 3 is a field stored in the database\n");
else
{
printf("Field 3 is NOT a field stored in the database\n");

if (Class == DBL_Class_FlowField)
printf("because it is a FlowField\n");
else
printf("because it is a FlowFilter field\n");
}

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldCount()

Function Counts the number of fields (columns) in a table.

Category Field function.

Syntax DBL_S16 DBL_FieldCount(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_FieldCount retrieves the number of fields in a record in a given table. Only active
fields are counted.

Example DBL_HTABLE hTable;
DBL_S16 FieldNo;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

Init(("Table 15 contains %d active field(s)\n",
 DBL_FieldCount(hTable));

printf("These fields are numbered as follows:\n");
for (FieldNo = 0; FieldNo = DBL_NextField(hTable, FieldNo;)
printf("%d\n", FieldNo);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
76

4.2 Library Functions in Alphabetical Order
DBL_FieldDataOffset()

Function Returns the offset of a specified field in a record.

Category Field function.

Syntax DBL_S16 DBL_FieldDataOffset(DBL_HTABLE hTable, DBL_U8 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose offset is to be retrieved

Remarks DBL_FieldDataOffset returns the offset of the field with field number FieldNo in bytes,
thereby indicating its position in relation to the first byte of the record. Generally, you
should not use this function to assign values to or retrieve values from fields – use the
DBL_AssignField and DBL_GetFieldData functions instead. This function is not expected
to exist in future versions of the C/FRONT API, and it is only included for compatibility
reasons for now.

If FieldNo does not exist, the function will raise an exception.

DBL_FieldLen()

Function Retrieves the declared length of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldLen(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose size will be retrieved

Remarks DBL_FieldLen returns the declared length of FieldNo. If FieldNo does not exist, the
function will raise an exception.

While DBL_FieldSize returns the actual length of the data in a field, DBL_FieldLen
returns the declared length. A text field could, for example, be declared with length 30,
while the actual size of the data in the field is 8 bytes.

For more information about C/SIDE field types and their sizes, see the Application
Designer’s Guide and Appendix A.

DBL_FieldName()

Function Retrieves the name of a specified field.

Category Field function.

Syntax const DBL_U8* DBL_FieldName(DBL_HTABLE hTable, DBL_S32 FieldNo);
77

Chapter 4. The Library Functions
hTable: Handle to the table
FieldNo: Number of the field whose name will be retrieved

Remarks DBL_FieldName returns the name of the field identified by FieldNo. This function
cannot be used to change the name of the field. Field names are defined in C/SIDE.

If no field exists with the number specified in FieldNo, the function will raise an
exception. Because the field name is returned as a pointer, it (the pointer) is only valid
while the handle to the table is open.

For more information about fields, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */
/* Causes an exception if field 3 does not exist in table 15 */
printf("Field name is %s\n", DBL_FieldName(hTable, 3));
printf("Field type is %d\n", DBL_FieldType(hTable, 3));
printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldNo()

Function Retrieves the number of a specified field that is identified by name.

Category Field function.

Syntax DBL_S32 DBL_FieldNo(DBL_HTABLE hTable, DBL_U8* FieldName);

hTable: Handle to the table
FieldName: Name of the field whose number is to be retrieved

Remarks DBL_FieldNo returns the field number of FieldName.

Each field is uniquely identified by both a number and a name. Two fields in the same
table cannot have the same number or name – this is checked when fields are created
in C/SIDE.

Fields are normally accessed by number because the random access used for numbers
is faster than the sequential scan used for names. Therefore, you should only call
DBL_FieldNo to look up the number of a field if your system does not support field
numbers, and there is no alternative.
78

4.2 Library Functions in Alphabetical Order
If no field exists with the name specified in FieldName, the function will raise an
exception.

Example DBL_HTABLE hTable;
DBL_S32 FieldNo;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Look up MyField in table 15 */
FieldNo = DBL_FieldNo(hTable, "TestField");

printf("TestField in table 15 has the number %d\n", FieldNo);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldOptionCaption()

Function Returns the option caption string for a field.

Category Field function

Syntax DBL_U8* DBL_FieldOptionCaption(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose option caption you want returned

Remarks Remarks DBL_FieldOptionCaption returns a string that contains the option captions for
the option field identified by FieldNo. Only fields of type DBL_Type_O32 have an
option caption string. The string consists of a comma-separated list of the valid option
captions for the field that match the valid values of the option field.

If no field exists with the number specified in FieldNo or if the field is not of the

DBL_Type_O32 type, the function will raise an exception.

This function cannot be used to change the option caption string of the field, only to
retrieve it.

Option caption strings can only be modified in C/SIDE.

Example DBL_HTABLE hTable;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
/* Retrieve the option caption string for field 6 in table 15 */
/* Causes an exception if field 6 does not exist in table 15 */
/* Causes an exception if field 6 is not of type DBL_Type_O32 */
printf("Option caption string is %s\n", DBL_FieldOptionCaption(hTable, 6));
79

Chapter 4. The Library Functions
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldOptionStr()

Function Retrieves the option string of a field.

Category Field function.

Syntax DBL_U8* DBL_FieldOptionStr(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Option field whose option string is to be retrieved

Remarks DBL_FieldOptionStr returns a string that contains the options for a specified option
field. Only fields of type DBL_Type_O32 have an option string. The string consists of a
comma-separated list of the valid options for the field that match the valid values of
the option field.

If no field exists with the number specified in FieldNo or if the field is not of the
DBL_Type_O32 type, the function will raise an exception.

This function cannot be used to change the option string of the field, only to retrieve it.
Option strings can only be modified in C/SIDE.

For more information about fields and option strings, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Retrieve the option string for field 6 in table 15 */
/* Causes an exception if field 6 does not exist in table 15 */
/* Causes an exception if field 6 is not of type DBL_Type_O32 */
printf("Option string is %s\n", DBL_FieldOptionStr(hTable, 6));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
80

4.2 Library Functions in Alphabetical Order
DBL_FieldSize()

Function Retrieves the size of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldSize(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose size will be retrieved

Remarks DBL_FieldSize returns the size of the field specified in FieldNo in bytes. If no field exists
with the number specified in FieldNo, the function will raise an exception.

For more information about the C/SIDE field types and their sizes, see the Application
Designer’s Guide and Appendix A.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */
/* Causes an exception if field 3 does not exist in table 15 */
printf("Field name is %s\n", DBL_FieldName(hTable, 3));
printf("Field type is %d\n", DBL_FieldType(hTable, 3));
printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FieldType()

Function Retrieves the type of a specified field.

Category Field function.

Syntax DBL_U16 DBL_FieldType(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: Number of the field whose type will be retrieved

Remarks DBL_FieldType returns the type of the field specified in FieldNo. If no field exists with
the number specified in FieldNo, the function will raise an exception.

C/SIDE supports the following data types: option, boolean, integer, biginteger, decimal,
text, code, date, time, BLOB, datetime, binary, dateformula, duration, GUID.
81

Chapter 4. The Library Functions
For more information about the C/SIDE data types, see the Application Designer’s
Guide. The sizes of the C/SIDE data types are listed in Appendix A.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */
/* Causes an exception if field 3 does not exist in table 15 */
printf("Field name is %s\n", DBL_FieldName(hTable, 3));
printf("Field type is %d\n", DBL_FieldType(hTable, 3));
printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FindRec()

Function Locates a record and copies it to a buffer.

Category Record function.

Syntax DBL_BOOL DBL_FindRec(DBL_HTABLE hTable, DBL_HREC hRec, DBL_U8* SearchMethod);

hTable: Handle to the table.
hRec: As input: Record from which the search will begin.
As output: Record that is found. Any FlowFields
associated with the record are set to zero; use
DBL_CalcFields to update these fields.

SearchMethod: A string with one or more of these operators:
= find record equal to hRec
< find record less than hRec
> find record greater than hRec
- find first record in table
+ find last record in table
NULL means the same as =

An operator can only occur once. The operators + and - must be used alone.

If SearchMethod contains any of the operators =, > or <, values must be assigned to all
the fields of the current key and the primary key in hRec before making this call.

Remarks DBL_FindRec retrieves the first record that meets the criteria set by SearchMethod and
the scope of any filters associated with the table handle (set by DBL_SetFilter/Range).
The order in which the records are scanned is determined by the current key of the
table handle (set by DBL_SetCurrentKey).

The search starts from the values in the current key fields in hRec. If the current key is
not the primary key, there is a chance that several records will have the same values in
82

4.2 Library Functions in Alphabetical Order
their current key fields. In such case, the values in the primary key fields of hRec are also
used in the search.

If a record is found, 1 is returned. If a record is not found, two things can happen:

1 If this result is allowed by DBL_Allow(DBL_Err_RecordNotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions, see Handling Errors and Exceptions on page
17.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Look up record matching hRec */
/* Causes an exception if hRec does not exist in table 15 */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));
DBL_FindRec(hTable, hRec, (DBL_U8*)"=");

/* Look up record equal to or greater than hRec */
/* Causes an exception if such a record does not exist */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));
DBL_FindRec(hTable, hRec, (DBL_U8*)"=>");

/* Look up first record */
/* Causes an exception if table 15 is empty */
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Look up last record */
/* Causes an exception if table 15 is empty */
DBL_FindRec(hTable, hRec, (DBL_U8*)"+");

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FindSet()

Function Finds a set of records

Category Record function

Syntax DBL_BOOL DBL_FindSet(DBL_HTABLE hTable, DBL_HREC hRec, DBL_BOOL ForUpdate,
DBL_BOOL UpdateKey);
83

Chapter 4. The Library Functions
hTable: Handle to the table
hRec: Handle to the record
ForUpdate: Whether or not the records are to be updated
UpdateKey: Whether or not a current key field is to be updated

Remarks DBL_FindSet is for looping through a set of records and can be used for updating
field values. The records can only be retrieved in ascending order.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Scan all records in table 15 in ascending order */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindSet(hTable, hRec, FALSE, FALSE))
do
{

} while (DBL_NextRec(hTable, hRec, 1) != 0);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FindTopRec()

Function Finds the top or the bottom record in a table.

Category Record function

Syntax DBL_BOOL DBL_FindTopRec(DBL_HTABLE hTable, DBL_HREC hRec, DBL_BOOL First);

hTable: Handle to the table
hRec: Handle to the record
First: Whether to find the first or the last record

Remarks This function allows you to find the first or the last record in a table. Enter TRUE if you
want to find the first record and FALSE if you want to find the last record.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
84

4.2 Library Functions in Alphabetical Order
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Look up first record */
/* Causes an exception if no records exist in table 15 */
DBL_FindTopRec(hTable, hRec, TRUE);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_FreeRec()

Function Removes a record buffer.

Category Record function.

Syntax void DBL_FreeRec(DBL_HREC hRec);

hRec: Record buffer to remove

Remarks DBL_FreeRec frees the memory occupied by the specified record buffer that was
previously allocated by a call to DBL_AllocRec. After this operation, hRec is no longer a
valid buffer.

A call to DBL_Exit will automatically remove all the record buffers.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

 /* Allocate memory for record buffer */
hRec = DBL_AllocRec(hTable);

/* ... */

/* Free memory occupied by record buffer */
DBL_FreeRec(hRec);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
85

Chapter 4. The Library Functions
DBL_GetCurrentKey()

Function Retrieves the key that is currently assigned to a table.

Category Key function.

Syntax DBL_S32* DBL_GetCurrentKey(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_GetCurrentKey returns a pointer to a list of the fields that make up the current key.
The field list will be the same as the key that has been set by a prior call to
DBL_SetCurrentKey. If DBL_SetCurrentKey has not been called, the current key is the
primary key.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S32 Key[DBL_MaxFieldsPerKey+1];
DBL_S32 *Field;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Select key on field 2 as the current key for the hTable */
/* Causes an exception if there is no key on field 2 */
Key[0] = 2;
Key[1] = 0;
DBL_SetCurrentKey(hTable, Key);

printf("The current key on hTable contains these fields:\n");
for (Field = DBL_GetCurrentKey(hTable); *Field; Field++)
printf("%d\n", *Field);

/* Scan all records sorted by field 2 in ascending order */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))
do {
/* Process records */
} while (DBL_NextRec(hTable, hRec, 1));

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
86

4.2 Library Functions in Alphabetical Order
DBL_GetDatabaseName()

Function Returns information about whether or not a database is open, and if it is open, its
name.

Category Database function.

Syntax DBL_BOOL DBL_GetDatabaseName(DBL_U8* DatabaseName);

DatabaseName: Name of the database, if a database is open

Remarks DBL_GetDatabaseName is called before opening a database to test if it is already open.
This function is used with DBL_OpenDatabase, DBL_ConnectServer or
DBL_ConnectServerandOpenDatabase.

Example 1 DBL_U8 DatabaseName[256];

DBL_Init();

/* Connect to a running database if there is one. */
/* If no database is running, use 2000 KB cache. */
DBL_OpenDatabase(NULL, 2000, 0);

if (!DBL_GetDatabaseName(DatabaseName))
{
strcpy(DatabaseName,"test.fdb");
/* There is no database running. */
/* Connect to database. */
DBL_OpenDatabase(DatabaseName, 0, 0);
}

printf("Connected to database: %s\n",DatabaseName);

/* Close database.*/
DBL_CloseDatabase();

DBL_Exit();

Example 2 DBL_U8 DatabaseName[256];

DBL_Init();

/* Connect to a running server if there is one. */
/* If no server is running, use 2000 KB cache. */
DBL_ConnectServer("TestServer", "netb");

if !DBL_GetDatabaseName(DatabaseName)
{
strcpy(DatabaseName,"test.fdb");
/* There is no database running*. */
/* Connect to database. */
DBL_OpenDatabase(DatabaseName, 0, 0);
}

printf("Connected to database: %s\n",DatabaseName);
87

Chapter 4. The Library Functions
/* Disconnect Server */
DBL_DisconnectServer();

DBL_Exit();

DBL_GetFieldData()

Function Retrieves data from a field.

Category Field function

Syntax DBL_S32 DBL_GetFieldData(void *Dst, DBL_S32 DstSize, DBL_HTABLE hTable,
DBL_HREC hRec, DBL_S32 FieldNo);

Dst: pointer to the destination of the field data
DstSize: amount of data to retrieve, in bytes
hTable: handle to the table
hRec: handle to the record to retrieve field data from
FieldNo: number of the field to retrieve data from

Remarks DBL_GetFieldData is the preferred way to retrieve data from a field in a record, in order
to store it in a variable for further processing. Dst is designed as a void pointer, and can
therefore be a pointer to any data type.

If the value of DstSize is less than the size of the data in the field specified with FieldNo
in the record of the hTable table referenced by the hRec handle, the function will raise
an exception. Therefore, you must be sure that Dst has enough space to contain the
data it will receive.

DBL_GetFieldData returns the number of bytes actually retrieved – which may be less
than DstSize.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
char s[100];
int i;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hRec,(DBL_U8*)"-")
/* Retrieve contents of field 10: */
i = DBL_GetFieldData(s,100,hTable,hRec,10);
/* Print out the result of the operation: */
printf("Contents of field 10: %s (%d bytes)\n",s,i);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
88

4.2 Library Functions in Alphabetical Order
DBL_Exit();

DBL_GetFieldDataAddr()

Function Retrieves a pointer to the data in a field.

Category Field function

Syntax void* DBL_GetFieldDataAddr(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32
FieldNo);

hTable: handle to the table
hRec: handle to the record of the field
FieldNo: the number of the field to retrieve the data address for

Remarks DBL_GetFieldDataAddr is designed to return a void pointer to the data contained in the
field with the number specified in FieldNo, in the record specified by hRec, and where
hTable is a handle to the table. In the application you must cast the pointer that is
returned by DBL_GetFieldDataAddr to be of the data type defined for that field.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_DATE *pDate;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */
DBL_FindRec(hTable,hRec,(DBL_U8*)"-")
/* Retrieve a pointer to data of field 5 */
pDate = (DBL_DATE*)DBL_GetFieldDataAddr(hTable,hRec,5);
/* ... */

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GetFieldDataSize()

Function Retrieves the data size of a field.

Category Field function.

Syntax DBL_S32 DBL_GetFieldDataSize(DBL_HTABLE hTable, DBL_S32 FieldNo, const void
*FieldVal);
89

Chapter 4. The Library Functions
hTable: handle to the table
FieldNo: number of the field to retrieve the data size for
FieldVal: NULL pointer, or pointer to data in field

Remarks DBL_GetFieldDataSize returns the data size of a field. In most cases, this will be the
same as the size of the field that was defined in C/SIDE. However, for fields with the
(C/SIDE) data types Text and Code, the actual size of the data in a field may be less than
the defined size, and the actual size of a BLOB field will always be different from the
defined field size – which is 0(zero) – when the BLOB field has a content (BLOB fields
are stored in a dedicated area of the database).

For these three data types, the number returned depends upon the FieldVal parameter.
If FieldVal is a NULL pointer, the defined size is returned. If FieldVal is a pointer to the
data, the actual size is returned (as retrievable by DBL_GetFieldDataAddr). For all the
other data types, it doesn’t matter whether FieldVal is a NULL pointer or a pointer to
the field data.

Example 1 DBL_HTABLE hTable;
DBL_S32 i;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Get the defined size of field 5: */
i = DBL_GetFieldDataSize(hTable,5,NULL);
/* Print out the size: */
printf("The defined size of field 5 is %d\n",i);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

Example 2 DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S32 i, j;
DBL_U8 *Text;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Get the defined size of field 10: */
i = DBL_GetFieldDataSize(hTable,10,NULL);
/* Retrieve a specific record from the table: */
DBL_FindRec(hTable,hRec,(DBL_U8*)"-")
/* Retrieve a pointer to the data of field 10 */
Text = (DBL_U8*)DBL_GetFieldDataAddr(hTable,hRec,10);
/* Get the actual size of the data in field 10: */
j = DBL_GetFieldDataSize(hTable,10,Text);

/* Print out the sizes: */
printf("Sizes of field 10 are:\n");
printf("Defined: %d\n",i);
90

4.2 Library Functions in Alphabetical Order
printf("Actual: %d\n",j);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GetFilter()

Function Retrieves the filter that has been set for a given field.

Category Filter function.

Syntax DBL_S32 DBL_GetFilter(DBL_HTABLE hTable, DBL_S32 FieldNo,
DBL_U8* FilterStr, DBL_S16 FilterStrSize);

hTable: Handle to the table
FieldNo: Number of the field whose filter will be retrieved
FilterStr: A string variable to hold filter information
FilterStrSize: Size of FilterStr, including the terminating zero

If the contents of the filter cannot fit in FilterStr, an exception is raised.

Remarks DBL_GetFilter returns the filter expression that has been set by DBL_SetFilter or
DBL_SetRange for the field specified by FieldNo.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S16 MaxValue;
DBL_U8 FilterStr[100];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Set filter on field 3 */
MaxValue = 500;
DBL_SetFilter(hTable, 3, ">=200&<=%1", &MaxValue, NULL);

/* Retrieve filter on field 3 */
DBL_GetFilter(hTable, 3, FilterStr, sizeof(FilterStr));
/* Variable FilterStr now contains the string ">=200&<=500" */

printf("Current filter on field 3 is %s\n", FilterStr);

/* Scan records with a value in field 3 in the range 200 - 500 */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))
do {
/* Process records */
} while (DBL_NextRec(hTable, hRec, 1) != 0);

DBL_FreeRec(hRec);
91

Chapter 4. The Library Functions
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GetLanguage

Function Returns the language ID of the language that is used by the current company.

Category Database function

Syntax DBL_S32 DBL_GetLanguage;

Remarks This function returns the ID of the language that is used by the current database.

Example DBL_S32 OrgLangId;
DBL_S32 NewLangId = 1031;
//(LangId for German)

OrgLangId = DBL_GetLanguage();

//Set new language
DBL_SetLanguage(NewLangId);

//Reset to original language
DBL_SetLanguage(OrgLangId);

DBL_GetLastErrorCode()

Function Retrieves the code of the last error.

Category Error function.

Syntax DBL_S32 DBL_GetLastErrorCode(void);

Remarks DBL_GetLastErrorCode returns the code number of the last error that you received.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

DBL_DeleteRec(hTable, hRec);
92

4.2 Library Functions in Alphabetical Order
/* Delete record again to provoke error */
DBL_DeleteRec(hTable, hRec);

if(DBL_GetLastErrorCode()!=0)
{
/*...record not found...*/
}

DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GetRange()

Function Retrieves the values of a range filter for a field.

Category Filter function.

Syntax void DBL_GetRange(DBL_HTABLE hTable, DBL_S32 FieldNo,
void* MinValue, void* MaxValue);

hTable: Handle to the table
FieldNo: Number of the field whose range filter is to be
retrieved
MinValue: If set to NULL, then MinValue is not returned
MaxValue: If set to NULL, then MaxValue is not returned

Remarks DBL_GetRange returns the start and end values of the range filter for the field specified
by FieldNo. The values are returned in MinValue and/or MaxValue, respectively. These
variables must have the same size as FieldNo.

If either value is undefined, any attempt to return them will cause an exception. Set the
undefined value to NULL to prevent an exception being caused.

DBL_GetRange can retrieve only a single interval, for example:

>=5 & <=8

Setting a range that is more complex than this will raise an exception.

Example DBL_HTABLE hTable;
DBL_S16 MinValue;
DBL_S16 MaxValue;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Set range filter on field 3 */
93

Chapter 4. The Library Functions
/* Equals DBL_SetFilter(hTable, 3, ">=200&<=500") */
MinValue = 200;
MaxValue = 500;
DBL_SetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range limits from current filter on field 3 */
DBL_GetRange(hTable, 3, &MinValue, &MaxValue);
/* Retrieve range minimum limit from current filter on field 3* /
DBL_GetRange(hTable, 3, &MinValue, NULL);
/* Retrieve range maximum limit from current filter on field 3 */
DBL_GetRange(hTable, 3, NULL, &MaxValue);

/**********/

/* Set one value filter on field 3 */
/* Equals DBL_SetFilter(hTable, 3, "=200") */
MinValue = 200;
DBL_SetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range limits from current filter on field 3 */
DBL_GetRange(hTable, 3, &MinValue, &MaxValue);
printf("MinValue and MaxValue now both contain the value 200\n");

/**********/

/* Remove filter on field 3 */
/* Equals DBL_SetFilter(hTable, 3, "") */
DBL_SetRange(hTable, 3, NULL, NULL);

/* Any call to DBL_GetRange(hTable, 3, ...) now causes an */
/* exception */

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GetVersion()

Function Retrieves the version number of the C/FRONT library functions.

Category Database function

Syntax DBL_S32 DBL_GetVersion(void);

Remarks This function returns the version number of the C/FRONT library.

Example printf("The C/FRONT library version is %d\n", DBL_GetVersion());
94

4.2 Library Functions in Alphabetical Order
DBL_GetView()

Function Returns the current sort order, key and filters on a table.

Category Table function

Syntax void DBL_GetView(const DBL_HTABLE hTable, DBL_U8 *ViewStrBuffer, DBL_S32
ViewStrBufferSize, DBL_BOOL UseFieldNames);

hTable: Handle to the table
ViewStrBuffer:
ViewStrBufferSize:
UseFieldNames: whether to use field names or not

Remarks If the UseFieldNames parameter is set to TRUE the returned string contains references
to field captions in the table that the record is associated with. If the parameter is set to
FALSE, field numbers are used instead.

Example DBL_HTABLE hTable;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

DBL_U8 ViewStrBuffer[250];
DBL_GetView(hTable, ViewStrBuffer, sizeof(ViewStrBuffer), true);
printf("The filter string is %s\n", ViewStrBuffer);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_GUID_2_Str

Function Converts a GUID to a string.

Category Conversion Function

Syntax void DBL_GUID_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_GUID);
Str: Variable to receive the converted string
StrSize: Size of Str in bytes, including the terminating zero
GUID: GUID to be converted

Remarks DBL_GUID_2_Str converts an GUID to a string and stores it in Str. If Str is not long
enough to contain the converted variable, the function raises an exception.

Example DBL_GUID, Str;

DBL_Init();
95

Chapter 4. The Library Functions
DBL_Exit();

DBL_HMST_2_Time()

Function Converts units of time to a TIME variable.

Category Conversion function.

Syntax void DBL_HMST_2_TIME(DBL_TIME* Time, DBL_S32 h, DBL_S32 m,
 DBL_S32 s, DBL_S32 t);

Time: TIME variable that will receive the converted value
h: Value for the hours
m: Value for the minutes
s: Value for the seconds
t: Value for the thousandths of a second

Remarks DBL_HMST_2_TIME combines discrete values for hours, minutes, seconds and
thousandths of a second to create a TIME variable. The range of the input values is not
checked – this is your responsibility!

Example DBL_TIME Time;
DBL_S32 h,m,s,t;

DBL_Init();

DBL_HMST_2_TIME(&Time, 14, 23, 30, 1);
/* Variable Time now contains the time 14:23:30.1 */

DBL_TIME_2_HMST(&h, &m, &s, &t, Time);
/* Variables h,m,s and t now contain 14, 23, 30 and 1 */
printf("h, m, s and t now contain %d, %d, %d and %d\n",h,m,s,t);

DBL_Exit();

DBL_Init()

Function Initializes the library.

Category Initializing function.

Syntax DBL_S32 DBL_Init(void);
96

4.2 Library Functions in Alphabetical Order
Remarks DBL_Init initializes (opens) the library by creating and initializing internal buffers and
tables. Initialization includes loading the Dynamics NAV DLL-modules used by the
library. An application must therefore call DBL_Init before it calls any other library
function.

If the library is successfully initialized, 0 is returned. If initialization fails, an error code is
returned. This is the only library function that returns an error code.

For more information about errors and exceptions, see Handling Errors and Exceptions
on page 17.

Once it has been successfully called, DBL_Init cannot be called again until you have
closed the library by calling DBL_Exit.

Example void main(int argc, char* argv[], char* envp[])
{
DBL_Init();

/* A database can now be opened or */
/* a connection to a server established */

DBL_Exit();

DBL_InitRec()

Function Initializes a record.

Category Record function.

Syntax void DBL_InitRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table
hRec: Handle to the record to be initialized

Remarks DBL_InitRec assigns default values to each field in the record buffer. The values
correspond to those that were defined when the table was created in C/SIDE. Fields for
which no values were defined are assigned zero values.

After this operation has been performed, you are free to change the values in any or all
of the fields before calling DBL_InsertRec to enter the record in the table. Ensure that
the field(s) which make up the primary key contain values that make the contents of
the total primary key unique. If the contents of the total primary key are not unique,
the database manager will reject the record.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();
97

Chapter 4. The Library Functions
/* Initialize all fields in hRec */
DBL_InitRec(hTable, hRec);

/* Assign value to field 1 in hRec */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));

/* Insert hRec into table 15 */
DBL_InsertRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_InsertRec()

Function Inserts a record into a table.

Category Record function.

Syntax DBL_BOOL DBL_InsertRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table
hRec: Handle to the record to be inserted. hRec itself does not change.

Remarks DBL_InsertRec inserts a record into an open table. Use DBL_InitRec to initialize the
record before assigning values to the fields. The current key and any filters that have
been placed on the table handle do not effect this operation.

A record is uniquely identified by the values of the fields in the primary key. The C/SIDE
database manager inspects the primary keys in the table before inserting the new
record.

If the record is successfully inserted, 1 is returned. If a record with the same value in the
primary key already exists in the table, the insertion will fail and two things can happen:

1 If this result is allowed by DBL_Allow(DBL_Err_RecordExists), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about errors and exceptions, see Handling Errors and Exceptions
on page 17.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.db", 2000, 0);
98

4.2 Library Functions in Alphabetical Order
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Initialize all fields in hRec */
DBL_InitRec(hTable, hRec);

/* Assign value to field 1 in hRec */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));

/* Insert hRec into table 15 */
DBL_InsertRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_KeyCount()

Function Counts the keys that are available for a table.

Category Key function.

Syntax DBL_S16 DBL_KeyCount(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_KeyCount returns the number of keys that have been defined for a table. A table
always has one primary key and can have one or more secondary keys. Therefore,
DBL_KeyCount always returns a number greater than or equal to one. Only active keys
are counted.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_S32 *Key,Field;
DBL_S16 i;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active key(s)\n",
DBL_KeyCount(hTable));

i = 0;
for (Key = NULL; Key = DBL_NextKey(hTable, Key);)
99

Chapter 4. The Library Functions
{
i++;
printf("Key %d contains these field number(s):\n", i);

for (Field = Key; *Field; Field++)
printf("%d\n", *Field);
}

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_KeySQLIndexFields()

Function Returns the SQLIndex fields of a specified table key.

Category Key function

Syntax DBL_S32 DBL_KeySQLIndexFields(DBL_HTABLE hTable, DBL_S32 *Key);

hTable: Handle to the table
Key: Key whose SQLIndex property is to be retrieved; this parameter may
represent either a primary or secondary key.

Remarks DBL_KeySQLIndexFields retrieves a list of the SQLIndex fields for a given key and for a
given table. The SQLIndex property is a C/SIDE feature that defines the actual fields to
be used in a SQL Index for the given table key.

Example DBL_HTABLE hTable;
DBL_S32 Key[DBL_MaxFieldsPerKey+1];
DBL_S32 *Field;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

Key[0] = 2; /* Field number 2 */
Key[1] = 0; /* Key terminator */

printf("The key defined by field 2 contains the following SQLIndex
fields:\n");
for (Field = DBL_KeySQLIndexFields(hTable, Key); *Field; Field++)
printf("%d\n", *Field);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
100

4.2 Library Functions in Alphabetical Order
DBL_KeySumFields()

Function Returns the SumIndexFields of a specified table key.

Category Key function.

Syntax DBL_S32* DBL_KeySumFields(DBL_HTABLE hTable, DBL_S32* Key);

hTable: Handle to the table
Key:Key whose list of SumIndexFields is to be retrieved; this parameter may
represent either a primary or secondary key

Remarks DBL_KeySumFields retrieves a list of the SumIndexFields for a given key and for a given
table. SumIndexFields are a special C/SIDE feature that permits speedy access to
numeric amounts, even in tables that contain thousands of records.

For more information about keys and SumIndexFields, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;
DBL_S32 Key[DBL_MaxFieldsPerKey+1];
DBL_S32 *Field;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

Key[0] = 2; /* Field number 2 */
Key[1] = 0; /* Key terminator */

printf("The key on field 2 contains the following SumIndexFields:\n");
for (Field = DBL_KeySumFields(hTable, Key); *Field; Field++)
printf("%d\n", *Field);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_LoadLicenseFile()

Function Loads a license file.

Category Database function.

Syntax void DBL_LoadLicenseFile(DBL_U8* FileName);

FileName: license file to load.
101

Chapter 4. The Library Functions
Remarks DBL_LoadLicenseFile loads the license file specified by FileName. This function must be
called before establishing a connection to a database – otherwise, the current
connection will be closed.

DBL_LockTable()

Function Locks a table.

Category Table function.

Syntax void DBL_LockTable(DBL_HTABLE hTable, DBL_U32 Mode);

hTable: Handle to the table
Mode: DBL_LockWait or DBL_LockNoWait

Remarks DBL_LockTable locks a table to prevent conflicting write operations. You can specify
either a Wait or NoWait lock for the Mode parameter:

• DBL_LockWait
If another application is carrying out a transaction on the table when you issue this
lock, the function suspends your operations and waits until the table is available
before returning.

• DBL_LockNoWait
If another application is carrying out a transaction on the table when you issue this
lock, the function raises an exception and calls the exception handler.

The C/SIDE database system uses table locking to ensure data integrity. Whenever an
application begins to change data in a table (with InsertRec / ModifyRec / DeleteRec),
the table is automatically locked. The lock prevents all other applications from
changing data in the same table and remains active until the write transaction is ended
(or aborted) with DBL_EWT or DBL_AWT.

Table locking does not prevent any authorized users from gaining read access to the
table.

Because all write operations automatically lock the table in question, a call to
DBL_LockTable would seem to be unnecessary. Imagine, however, a transaction in
which an application wants to inspect data before possibly (though not necessarily)
changing it – and have a guarantee that the data it changes has not been altered since
it was read. The solution is to lock the table before reading, thereby ensuring that no
other application can change the data between your reading the data and performing
the possible write transaction.

The C/SIDE database system provides deadlock detection. Let us say that two
applications, A and B, simultaneously want to lock the same two tables but in reverse
order. Thus A locks Table 1 and waits to lock Table 2, while B locks Table 2 and waits to
lock Table 1. This potentially fatal situation is called a deadlock and is automatically
detected by the C/SIDE database manager. One of the applications will raise an
exception and be terminated, while the other will be allowed to continue.
102

4.2 Library Functions in Alphabetical Order
DBL_LockTable is only allowed within a DBL_BWT/DBL_EXT construction.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Prevent other users from modifying table 15 */
DBL_LockTable(hTable, DBL_LockWait);

/* Retrieve hRec from table 15 */
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Assign value to field 2 in hRec */
DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),"Name",
strlen("Name"));

/* Modify hRec in table 15 */
DBL_ModifyRec(hTable, hRec);

/* Commit write transaction and remove table lock */
DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Login()

Function Logs a user into a database.

Category Database function.

Syntax DBL_BOOL DBL_Login(DBL_U8* UserID, DBL_U8* PassWord);

UserID: Login name (see DBL_MaxUserIDLen in cf.h)
PassWord: Password belonging to UserID
(see DBL_MaxPassWordLen in cf.h)

Remarks DBL_Login plays a double role: it controls access to tables in a multiuser environment,
and it provides password protection for user verification. The function must be called if
more than one user (DBL_UserCount > 0) is permitted to open the database tables.

A successful login, however, does not ensure access to the data. Anyone can open a
database and then, after logging in, inspect table descriptions, but gaining access to
data tables requires further verification. The security mechanisms in C/SIDE allow any
103

Chapter 4. The Library Functions
or all tables to be protected against unauthorized users. A typical user, for example,
may only have read access to the tables in one company, may be able to read and write
to the tables in another company and have no access at all to the tables in a third
company. DBL_Login returns 1 for a successful login and 0 for an unsuccessful login.

User IDs are stored in an internal table in the database. The contents of this table
cannot be changed by any of the functions in the library, although the current User ID
can be retrieved by DBL_UserID. User IDs can only be created, modified and deleted
within C/SIDE.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */
if (DBL_UserCount() > 0)
{
/* Log into database */
DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());
}

/* ... */

DBL_CloseDatabase();
DBL_Exit();

DBL_ModifyRec()

Function Modifies a record in a table.

Category Record function.

Syntax DBL_BOOL DBL_ModifyRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: The handle to the table
hRec: The handle to the record that is to be modified. hRec itself does not
change.

Remarks DBL_ModifyRec modifies a record in the table. The record to be modified is the one
identified by the values in the primary key fields in hRec. The current key and any filters
that have been placed on the table handle have no effect on this operation.

In a multiuser environment, another application can modify the record in the table in
the interval between your reading the record and your attempting to modify it. The
C/SIDE database system automatically detects such an event, causing DBL_ModifyRec
to raise an exception.

To prevent this from happening, use DBL_LockTable to lock the table before reading
the record. Remember, however, that the table will be locked for the entire time that
elapses between reading the record and modifying it, and other users will therefore be
unable to access it.
104

4.2 Library Functions in Alphabetical Order
For more information about table locking, see the Application Designer’s Guide.

Note that the library does not support range and validity checks – it is your
responsibility to verify that the data you are inserting is valid.

If the record is successfully modified, 1 is returned. If the record is not found in the
table, two things can happen:

1 If this result is allowed by the function BL_Allow(DBL_Err_RecordNotFound), 0 is
returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions and errors, see Handling Errors and Exceptions
on page 17.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Prevent other users from modifying table 15 */
DBL_LockTable(hTable, DBL_LockWait);

/* Retrieve hRec from table 15 */
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Assign value to field 2 in hRec */
DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),"Name",
strlen("Name"));

/* Modify hRec in table 15 */
DBL_ModifyRec(hTable, hRec);

/* Commit write transaction and remove table lock */
DBL_EWT();

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_NextCompany()

Function Retrieves the company name that comes after a specified company name.

Category Database function.
105

Chapter 4. The Library Functions
Syntax DBL_U8* DBL_NextCompany(DBL_U8* CompanyName);

CompanyName: Name of a company, or a NULL pointer. Both this parameter and the
result returned by the function are pointers to strings.

Remarks DBL_NextCompany returns the company name that follows CompanyName. You can
scan all the company names in a database, by executing DBL_NextCompany in a loop.
If you call this function with CompanyName set to NULL, the first company name in the
database is returned. If you then call DBL_NextCompany using this result as an
argument, the function returns the second company name, and so on, until the entire
list has been scanned. When the end of the list is reached, the function returns a NULL
pointer.

The company is neither opened or closed when this function is called.

Example DBL_U8* CompName;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

printf("The database contains the following companies:\n");
for (CompName = NULL; CompName = DBL_NextCompany(CompName);)
{
printf("%s\n", CompanyName);
}

DBL_CloseDatabase();
DBL_Exit();

DBL_NextField()

Function Retrieves the field number that comes after the specified field number in a table.

Category Field function.

Syntax DBL_S32 DBL_NextField(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table
FieldNo: A field number. If set to zero, the first field number in the record
is retrieved.

Remarks DBL_NextField returns the field number of the field that comes after FieldNo. If the
function reaches the end of the field number list, zero is returned.

DBL_NextField can scan the entire list of fields in a table. The scan is restricted to the
active fields and excludes the inactive ones.

For more information about active and inactive fields, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;
DBL_S32 FieldNo;
106

4.2 Library Functions in Alphabetical Order
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("test Company");
DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active field(s)\n",
DBL_FieldCount(hTable));

printf("These fields are numbered as follows:\n");
for (FieldNo = 0; FieldNo = DBL_NextField(hTable, FieldNo);)
printf("%d\n", FieldNo);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_NextKey()

Function Retrieves the table key that comes after a specified table key.

Category Key function.

Syntax DBL_S32* DBL_NextKey(DBL_HTABLE hTable, DBL_S32* Key);

hTable: Handle to the table
Key: A table key or a NULL pointer

Remarks DBL_NextKey returns the key that comes after the specified key in the table. Both the
parameter "Key" and the function result are pointers to zero-terminated char arrays
that contain the numbers of the fields comprising a key.

This function does not influence the definition or selection of the keys. Table keys are
defined in C/SIDE.

If Key is set to NULL, the first key for the table is returned. The first key is the primary
key. If DBL_NextKey is then called using the first key as the argument, the second key is
returned, and so on. When the function reaches the end of the key list, it returns a
NULL pointer. In this way, DBL_NextKey can scan the entire list of table keys. The scan is
restricted to the active keys and excludes the inactive ones.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_S32 *Key;
DBL_S32 *Field;
DBL_S16 i;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active key(s)\n",
DBL_KeyCount(hTable));
107

Chapter 4. The Library Functions
i = 0;
for (Key = NULL; Key = DBL_NextKey(hTable, Key);)
{
i++;
printf("Key %d contains the following field number(s):\n", i);
for (Field = Key; *Field; Field++)
printf("%d\n", *Field);
}

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_NextRec()

Function Steps through a specified number of records to retrieve a record.

Category Record function.

Syntax DBL_S16 DBL_NextRec(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S16 Step);

hTable: Handle to the table
hRec: As input: Record from which the search will begin.
As output: Record that is found. Any FlowFields
associated with the record are set to zero; use
DBL_CalcFields to update these fields.
Step: Number of steps. If Step=0, the function has no effect.
For backward movement through the table, use a negative
number.

Remarks DBL_NextRec locates a record that is positioned a given number of steps before or after
hRec. Movement through the table is governed by the filters and by the current key
that is associated with the table handle. All of the fields in hRec which will be compared
to the current key must contain relevant values before this function is called.

The function returns the number of records that have been scanned which meet the
criteria set by any filters, given the current key. This value can be closer to zero than
Step, depending upon the number of records in the table. If the table is empty, zero is
returned and hRec remains unchanged.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Scan all records in table 15 in ascending order */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))
108

4.2 Library Functions in Alphabetical Order
do
{

} while (DBL_NextRec(hTable, hRec, 1) != 0);

/* Scan all records in table 15 in descending order */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"+"))
do
{

} while (DBL_NextRec(hTable, hRec, -1) != 0);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_NextTable()

Function Returns the table number of the table that comes after a given table number.

Category Table function.

Syntax DBL_S32 DBL_NextTable(DBL_S32 TableNo);

TableNo: A number of a table. If set to zero, the first table number is
retrieved.

Remarks DBL_NextTable allows you to scan all of the table numbers within a database. It returns
the table number that comes after TableNo – or zero when it reaches the end of the list
of table numbers.

For more information about tables, see the Application Designer’s Guide.

Example DBL_S32 TableNo;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company")

printf("The database contains the following table numbers:\n");
for (TableNo = 0; TableNo = DBL_NextTable(TableNo);)
{
printf("%d\n", TableNo);
}

DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
109

Chapter 4. The Library Functions
DBL_Oem2AnsiBuff

Function Converts characters from OEM to ANSI.

Category Conversion function.

Syntax void DBL_Oem2AnsiBuff(const DBL_U8 *Src,DBL_U8 *Dst,DBL_S32 DstSize)

Src: the source
Dst: the destination
DstSize: the number of characters to be converted

Remarks DBL_Oem2AnsiBuff converts the character buffer from OEM to ANSI. You must specify
the source buffer the destination buffer and the number of characters. This function
should be used in conjunction with DBL_Ansi2OemBuff because it can successfully
convert the characters from OEM to ANSI and back again. The comparable Windows
function does not always perform this conversion successfully.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Oem buffer is allocated room for 10 characters */
DBL_U8 Oembuff[10]

/* Ansi buffer is allocated room for 5 characters */(
DBL_U8 Ansibuff[5]

/* Copy the string "Hi" to the Oem buffer */
strcpy(Oembuff, "Hi")

/* Convert the two character string from OEM to ANSI */
DBL_Oem2AnsiBuff(Oembuff, Ansibuff, 2);

DBL_CloseDatabase();
DBL_Exit();

DBL_OpenCompany()

Function Opens a company in an open database.

Category Database function.

Syntax void DBL_OpenCompany(DBL_U8* CompanyName);

CompanyName: Company to open

Remarks DBL_OpenCompany allows an application to select a company and thereby open tables
and access data (records) from the database.

An application can have only one company open at a time, but it can have many tables
open, provided they are in the same company.
110

4.2 Library Functions in Alphabetical Order
In a multiuser environment, different applications can access different companies
within a single database (via a server), but each application can only have one company
open at a time.

If CompanyName does not exist, the function raises an exception.

For more information about companies, see the Application Designer’s Guide.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company */
/* Causes an exception if "Test Company" does not exist */

DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* Close company */
DBL_CloseCompany();

DBL_CloseDatabase();
DBL_Exit();

DBL_OpenDatabase()

Function Opens a database file.

Category Database function.

Syntax void DBL_OpenDatabase(DBL_U8* DatabaseName, DBL_S32 CacheSize,
DBL_BOOL UseCommitCache);

DatabaseName: Database to open
CacheSize: Size of cache in KB
UseCommitCache: Whether to use CommitCache or not

Remarks DBL_OpenDatabase opens a database with a cache of the size specified in CacheSize
and loads the database manager. All succeeding calls to access the database are passed
to the database manager, which executes the operations.

A cache is an area of RAM that holds the results of recent disk accesses. CacheSize
specifies the amount of memory assigned to the disk cache that is used by the
database manager when it accesses the database file. The size depends upon which
operating system is being used. As a general rule, the larger the cache, the better the
performance.

For more information about cache size and performance, see the Installation and
System Management manual.

There are no restrictions on opening a database, but access to the tables can be
governed by a password. See DBL_Login.
111

Chapter 4. The Library Functions
Close the database by calling DBL_CloseDatabase. An application can have only one
database open at a time. Use DBL_CloseDatabase before opening another database.
Applications can switch between a server connection and a locally-opened database
(use DBL_ConnectServerandOpenDatabase, DBL_ConnectServer and
DBL_OpenDatabase); remember to close the current connection before making the
switch.

If there is an error, the function raises an exception and calls the exception handler.

For more information about exceptions and errors, see Handling Errors and Exceptions
on page 17.

Example DBL_Init();

/* Open database using 2000 Kb cache */
/* Causes an exception if database test.fdb does not exist */
/* Causes an exception if 2000 Kb cache cannot be allocated */
DBL_OpenDatabase("test.fdb", 2000, 0);

/* ... */

/* Close database */
DBL_CloseDatabase();

DBL_Exit();

DBL_OpenTable()

Function Opens a table and creates a handle to it.

Category Table function.

Syntax DBL_BOOL DBL_OpenTable(DBL_HTABLE* hTablePtr, DBL_S32 TableNo);

hTablePtr: New handle to the table
TableNo: Number of the table to be opened

Remarks DBL_OpenTable opens the table identified by TableNo and assigns a handle to the
table. This handle can be used for future calls. The handle remains valid until
DBL_CloseTable is invoked. You can create several handles to the same table. You can
also use other library functions to set filters and to set a current key individually for
each handle.

DBL_OpenTable will open the table even if the user (verified by DBL_Login) does not
have permission to access the table. But the application will receive an error when the
user tries to read or modify the data in the table. Only the table description (field and
key layout) can be accessed, not the table data.

If the table is successfully opened, 1 is returned. If the table does not exist, two things
can happen:

1 If this result is allowed by DBL_Allow(DBL_Err_TableNot Found), 0 is returned.
112

4.2 Library Functions in Alphabetical Order
2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");

/* Open table */
/* Causes an exception if table 15 does not exist */
DBL_OpenTable(&hTable, 15);

/* Close table */
DBL_CloseTable(hTable);

/* Open table */
DBL_Allow(DBL_Err_TableNotFound);
if (DBL_OpenTable(&hTable, 16))
{
printf("Table opened\n");

/* ... */

/* Close table */
DBL_CloseTable(hTable);
}
else
printf("Table does not exist\n");

DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_OpenTemporaryTable()

Function Creates a temporary table.

Category Table function.

Syntax DBL_BOOL DBL_OpenTable(DBL_HTABLE* hTablePtr, DBL_S32 TableNo);

hTablePtr: New handle to the table
TableNo: The number of the table to be used as a template for the temporary
table.

Remarks DBL_OpenTemporaryTable creates a temporary table based on the table description of
the "real" table with the number specified in TableNo. The temporary table can be
accessed like any other table by using hTablePtr.

You cannot perform transactions on a temporary table because it is not a part of the
database. The temporary table does not exist outside the application that creates it.
113

Chapter 4. The Library Functions
Consequently, it is also "private" for the application that creates it, and other users in a
multi-user system cannot access it. Other than that, you can perform the same
operations as on a "real" table.

The benefit of using a temporary table is that it is held in memory and this makes
performing operations on it very fast. In a client/server environment, this also reduces
the load on the network. You can copy records from the corresponding "real" table by
using DBL_FindRec and DBL_NextRec. You cannot use DBL_CopyRec because the
source and the destination records must be in the same table when you are using this
function. When you have performed a series of operations on the records in a
temporary table, you can insert these records into the "real" table by using
DBL_InsertRec or DBL_ModifyRec.

DBL_RecCount()

Function Counts the number of records in a table.

Category Record function.

Syntax DBL_S32 DBL_RecCount(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_RecCount returns the number of records that meet the conditions specified in any
filters assigned to the table handle. If no filters are set, DBL_RecCount returns the total
number of records in the table.

This operation is very quick if the table is not filtered. Filters make movement through
the table slower.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d record(s)\n", DBL_RecCount(hTable));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_ReleaseAllObjects()

Function Releases all of the resources in C/FRONT.

Category Database function.
114

4.2 Library Functions in Alphabetical Order
Syntax void DBL_ReleaseAllObjects(void);

Remarks DBL_ReleaseAllObjects releases all of the allocated resources in C/FRONT. This means
that all the tables are closed and all the allocated records are released.

This function is meant to be used when you are handling errors, where it is desirable to
have all of the resources released at once.

The database is not closed, and any open companies are not closed either.

If all of the resources are not released, a call to DBL_OpenDatabase or
DBL_CloseDatabase will raise an exception.

DBL_RemoveFilter()

Function Removes all the filters that have been applied to a specified table.

Category Filter function.

Syntax void DBL_RemoveFilter(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_RemoveFilter removes all the filters that have been applied (with function
DBL_SetFilter or DBL_SetRange) to the fields of the table specified by hTable.

If no filters have been assigned the result is the same.

For more information about filter syntax and relational operators, see the Application
Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_S16 MinValue;
DBL_S16 MaxValue;
DBL_U32 RecCount;
DBL_U8 FilterStr[100];
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
RecCount = DBL_RecCount(hTable);
printf("\nRecord count without filters: %d", RecCount);

/* Set filter on field 3 */
DBL_SetFilter(hTable, 3, ">=200&<=500", NULL);
RecCount = DBL_RecCount(hTable);
printf("\nRecord count with filter on field 3: %d", RecCount);

/* Set filter on field 4 */
MaxValue = 20;
MaxValue = 50;
DBL_SetRange(hTable, 4, &MinValue, &MaxValue);
RecCount = DBL_RecCount(hTable);
115

Chapter 4. The Library Functions
printf("\nRecord count with filters on fields 3 and 4: %d", RecCount);

/* Remove filters on all fields */
DBL_RemoveFilter(hTable);
RecCount = DBL_RecCount(hTable);
printf("\nRecord count after all filters are removed: %d", RecCount);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_RenameRec()

Function Renames the primary key of a record in a table.

Category Record function

Syntax DBL_BOOL DBL_RenameRec(hTable,hNewRec,hOldRec);
hTable: Handle to the table
hNewRec: Handle to the record with the new primary key
hOldRec: Handle to the original record

Remarks This function renames the primary key of a record and the return value tells you
whether or not the primary key of the record was renamed.

The system typically returns FALSE if the record does not exist or if you do not have
write permission to the table.

In a multiuser environment, another application can rename the record in the table in
the interval between your reading the record and your attempting to rename the
primary key. The C/SIDE database system automatically detects such an event, causing
DBL_RenameRec to raise an exception. To prevent this from happening, use
DBL_LockTable to lock the table before reading the record. Remember, however, that
the table will be locked for the time that elapses between reading the record and
renaming it, and that other users will therefore be unable to access it.

DBL_SelectLatestVersion()

Function Selects the latest data version.

Category Database operation

Syntax void DBL_SelectLatestVersion(void);

Remarks DBL_SelectLatestVersion accesses the newest version of the data in a database. All
subsequent database operations will be performed on this version of the data. In a
single-user environment, this function has no effect, because the application always
accesses the newest version – there are no other active applications creating new
versions.
116

4.2 Library Functions in Alphabetical Order
For more information about database versions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Retrieve hRec from my data version */
DBL_FindRec(hTable, hRec, (DBL_U8*)"-");
printf("hRec was found\n");

/* Another application connected to the database/server */
/* and deleted hRec */
/*...
DBL_BWT();
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));
DBL_DeleteRec(hTable, hRec);
DBL_EWT();
...
***/

/* Retrieve hRec again from my data version */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));
DBL_FindRec(hTable, hRec, (DBL_U8*)"=");
printf("hRec was found\n");

/* Select the latest public version to be my data version */
DBL_SelectLatestVersion();

/* Retrieve hRec from my data version */
DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",
strlen("100"));
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"="))
printf("Record still exists\n");
else
printf("Record has been deleted by another application\n");

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
117

Chapter 4. The Library Functions
DBL_S32_2_BCD()

Function Converts an S32 variable to a BCD (decimal number).

Category Conversion function.

Syntax void DBL_S32_2_BCD(DBL_BCD *Dest, DBL_S32 Source);

Dest: Variable in which the converted S32 variable is placed
Source: S32 variable to be converted

Remarks DBL_S32_2_BCD converts Source to a BCD and places the result in Dest.

Example DBL_BCD b1;
DBL_S32 s1, s2;

DBL_Init();

s1 = 31415;
DBL_S32_2_BCD(&b1, s1);
s2 = DBL_BCD_2_S32(&b1);

if (s1 != s2)
 return(-1);

DBL_Exit();

DBL_S32_2_S64()

Function Converts an S32 variable (integer) to an S64 value (biginteger).

Category BCD function.

Syntax void DBL_S32_2_S64(DBL_S64 *Dest, DBL_S32 Source);

Dest: Variable in which the converted S32 variable is placed
Source: The S32 variable to be converted

Remarks DBL_S32_2_S64 converts the integer in Source to a biginteger and places the result in
Dest.

Example DBL_S64 b1, b2;
DBL_S32 i1, i2;

DBL_Str_2_S64(&b1, "12345");
DBL_Str_2_S64(&b2, "98765432100");

DBL_S64_2_S32(&i1, &b1);
printf("i1 = %i", i1);

DBL_S64_2_S32(&i2, &b2); /* Will return -2147483648 which indicates an
undefined S32 number */
printf("i2 = %i", i2);
118

4.2 Library Functions in Alphabetical Order
DBL_S32_2_S64(&b2, i1)

DBL_S64_2_S32()

Function Converts an S64 variable (biginteger) to an S32 value (integer).

Category Conversion function.

Syntax void DBL_S64_2_S32(DBL_S32 *Dest, DBL_S64 Source);

Dest: Variable in which the converted S64 variable is placed
Source: The S64 variable to be converted

Remarks DBL_S64_2_S32 converts the biginteger in Source to an integer and places the result in
Dest.

This function can only return valid integers as long as the biginteger contains values
that do not exceed the value range of an integer. If the biginteger exceeds the value
range of an integer, the function returns -2147483648 which indicates an undefined
integer.

Example DBL_S64 b1, b2;
DBL_S32 i1, i2;

DBL_Str_2_S64(&b1, "12345");
DBL_Str_2_S64(&b2, "98765432100");

DBL_S64_2_S32(&i1, &b1);
printf("i1 = %i", i1);

DBL_S64_2_S32(&i2, &b2); /* Will return -2147483648 which indicates an
undefined S32 number */
printf("i2 = %i", i2);

DBL_S32_2_S64(&b2, i1)

DBL_S64_2_Str()

Function Converts a biginteger to a string.

Category Conversion function

Syntax void DBL_S64_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_S64 *S64Src);

Str: The string variable to place the converted value in
StrSize: The size of the string
S64Src: The biginteger to be converted

Remarks This function converts a biginteger to a string and places the result in Str.
119

Chapter 4. The Library Functions
Example DBL_S64 b1;
DBL_U8 Str[50];
DBL_Str_2_S64(&b1, "12345");
DBL_S64_2_Str(Str, sizeof(Str), &b1);
printf("The value of the biginteger is %s", Str);

DBL_SetCurrentKey()

Function Sets the current key for a table handle.

Category Key function.

Syntax DBL_BOOL DBL_SetCurrentKey(DBL_HTABLE hTable, DBL_S32* Key);

hTable: Handle to the table
Key: Desired key or a NULL pointer

Remarks DBL_SetCurrentKey assigns a specified key to a table handle. The key becomes the
current key and is used by DBL_FindRec, DBL_NextRec and other functions until
another key is selected. Use DBL_NextKey to scan the list of keys for the table to find
out which keys are available. Only active keys will be retrieved.

The primary key of the table is the current key, until DBL_SetCurrentKey is called. When
a secondary key is the current key, you can make the primary key the current key again
by calling DBL_SetCurrentKey with Key set to NULL.

If a new current key is successfully assigned to the table handle, 1 is returned. If the
requested key does not exist, two things can happen:

1 If this result is allowed by the DBL_Allow(DBL_Err_KeyNotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions and errors, see Handling Errors and Exceptions
on page 17.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S32 Key[DBL_MaxFieldsPerKey+1];
DBL_S32 *Field;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Select key defined for field 2 as current key for the hTable */
/* handle. Causes an exception if table 15 does not have a */
/* key on field 2 */
Key[0] = 2;
120

4.2 Library Functions in Alphabetical Order
Key[1] = 0;
DBL_SetCurrentKey(hTable, Key);

printf("The current key on hTable contains these fields:\n");
for (Field = DBL_GetCurrentKey(hTable); *Field; Field++)
printf("%d\n", *Field);

/* Scan all records sorted by field 2 in ascending order */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))
do
{

} while (DBL_NextRec(hTable, hRec, 1));

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_SetExceptionHandler()

Function Installs a user-written exception handler.

Category Exception-handling function.

Syntax void* DBL_SetExceptionHandler(DBL_pFuncExceptionHandler ExceptionHandler);

ExceptionHandler: The function to be installed as the exception handler for
the library. If set to NULL, the default exception handler is restored.

Remarks This function installs ExceptionHandler as the exception handler that is used by the
library. DBL_SetExceptionHandler returns the address of the previous exception
handler. If you want to reinstall the default exception handler later, you must store this
address, and use it in a call to DBL_SetExceptionHandler. Installing another handler, for
example, the default one, is also the only way to disable a customized exception
handler.

Example void main(DBL_S16 argc, DBL_U8 *argv[], DBL_U8 *envp[])
{
/* ... */
DBL_SetExceptionHandler(My_ExceptionHandler);
/* ... */
}

void DBL_CDECL My_ExceptionHandler(DBL_S32 ErrorCode, DBL_BOOL IsFatal)
{
char *Fatal = (IsFatal) ? " Fatal" : "";
char *dbError = (19 == (ErrorCode/0x10000L)) ? "Database " :
""; /* Module No in high word */
ErrorCode &= 0xffffL; /* Error Code in low word */
printf("Exception Handler called with%s %sError: %d.\n",
Fatal, dbError, ErrorCode);
if(IsFatal)
121

Chapter 4. The Library Functions
exit(ErrorCode);

DBL_SetFilter()

Function Assigns a filter to a specified field.

Category Filter function.

Syntax void DBL_SetFilter(DBL_HTABLE hTable, DBL_S32 FieldNo, DBL_U8* FilterStr,
void* ValuePtr1, ...);

hTable: Handle to the table
FieldNo: Number of the field for which a filter will be set
FilterStr: Filter expression for the field, consisting of alphanumeric
characters and one or more of the following operators: < > ? & | =

ValuePtr1..9: Replacement values for FilterStr. For example, if FilterStr
contains the parameter %4, it is replaced by the fourth
argument in this list. The list of replacement values must
end with the parameter NULL.

Remarks DBL_SetFilter assigns a filter to the field specified by FieldNo. Any filter that is already
assigned to FieldNo for this table handle is removed before the new filter is attached. If
FilterStr is empty or contains a NULL pointer, no filter will be assigned to FieldNo, and
any filter that is currently assigned will be removed.

For more information about filter syntax and relational operators, see the Application
Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_S16 MaxValue;
DBL_U8 FilterStr[100];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

/* Set filter on field 3 */
MaxValue = 500;
DBL_SetFilter(hTable, 3, ">=200&<=%1", &MaxValue, NULL);

/* Retrieve filter on field 3 */
DBL_GetFilter(hTable, 3, FilterStr, sizeof(FilterStr));
/* Variable FilterStr now contains the string ">=200&<=500" */

printf("Current filter on field 3 is %s\n", FilterStr);

/* Scan records with a value in field 3 in the range 200-500 */
DBL_Allow(DBL_Err_RecordNotFound);
if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))
do
{

122

4.2 Library Functions in Alphabetical Order
} while (DBL_NextRec(hTable, hRec, 1) != 0);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_SetLanguage()

Function Sets the language ID that will be used by the company that is currently open.

Category Database function

Syntax void SetLanguage(System.Int32 LanguageID);

LanguageID: the ID of the language to be used by the company.

Remarks

Example DBL_S32 OrgLangId;
DBL_S32 NewLangId = 1031;
//(LangId for German)

OrgLangId = DBL_GetLanguage();

//Set new language
DBL_SetLanguage(NewLangId);

//Reset to original language
DBL_SetLanguage(OrgLangId);

DBL_SetMessageShowHandler()

Function Installs a customized message handler that will be used instead of the default message
handler.

Category Error function

Syntax void* DBL_SetMessageShowHandler(DBL_pFuncMessageShowHandler ShowFunc);

ShowFunc: pointer to the function to use for showing messages.

Remarks DBL_SetMessageShowHandler installs a customized function for showing messages.

Example void main(DBL_S16 argc, DBL_U8 *argv[], DBL_U8 *envp[])
{
/* ... */
DBL_SetMessageShowHandler(My_MessageShowHandler);
/* ... */
123

Chapter 4. The Library Functions
}

void DBL_CDECL My_MessageShowHandler(DBL_U8 *Msg, DBL_U32 MsgType, DBL_S32
ErrorCode)
{
DBL_S32 LnWidth = 70;
do {
DBL_U8 *Ret = (DBL_U8*)memchr(Msg,'\r',strlen((char*)Msg));

if (Ret > Msg+LnWidth) {
DBL_U8 *Space = (DBL_U8*)memchr_bckwrd(Msg,LnWidth,' ');
if (Space)
Ret = Space;
}

if (Ret)
*Ret++ = 0;

printf("%s\n",Msg);
Msg = Ret;
} while(Msg && *Msg != 0);

fflush(stdout);
}

static void* memchr_bckwrd(const void *Dst, DBL_S32 Size, DBL_U8 Chr)
{
DBL_U8 *pS = (DBL_U8*)Dst+Size;
while(--pS >= Dst)
if (*pS == Chr)
return(pS);
return(NULL);
}

DBL_SetNavisionPath()

Function Sets the path to the directory where Dynamics NAV is installed.

Category Initialization function.

Syntax void DBL_SetNavisionPath(DBL_U8 *Path);

Path: Path to the directory containing the Dynamics NAV files.

Remarks Normally the C/FRONT library (cfront.dll) reads the registry in order to locate the
Dynamics NAV DBMS system. However, if multiple Dynamics NAV systems are installed
or if Dynamics NAV is not present on the system, the function DBL_SetNavisionPath
should be called with the path to the directory of the Dynamics NAV installation or to a
directory containing the following files from a Dynamics NAV installation:

dbm.dll
nc_netb.dll
nc_tcp.dll
124

4.2 Library Functions in Alphabetical Order
slave.exe
fin.flf

DBL_SetNavisionPath must be called before any other function in the library, except
DBL_Init, DBL_SetExceptionHandler and DBL_SetMessageShowHandler.

When you enter the path to Dynamics NAV, you must enter \\ for each \. For example,
C:\\Program Files\\...

DBL_SetRange()

Function Sets a range filter for a field.

Category Filter function.

Syntax void DBL_SetRange(DBL_HTABLE hTable, DBL_S32 FieldNo, const void* MinValue,
const void* MaxValue);

hTable: Handle to the table
FieldNo: Number of the field for which the filter is to be set
MinValue: Starting value. If set to NULL, the filter is removed,
regardless of the contents of MaxValue.
MaxValue: Ending value. If NULL, the range is set to MinValue..MinValue.

Remarks DBL_SetRange provides a quick way to set a simple filter on a field. Any filter already
assigned to the field is removed.

If MaxValue is set to NULL, the range is set to MinValue alone.

Both MinValue and MaxValue must be of the same type as FieldNo.

Example DBL_HTABLE hTable;
DBL_S16 MinValue;
DBL_S16 MaxValue;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

/* Set range filter on field 3 */
/* Equals DBL_SetFilter(hTable, 3, ">=200&<=500") */
MinValue = 200;
MaxValue = 500;
DBL_SetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range limits from current filter on field 3 */
DBL_GetRange(hTable, 3, &MinValue, &MaxValue);
/* Retrieve range minimum limit from current filter on field 3 */
DBL_GetRange(hTable, 3, &MinValue, NULL);
/* Retrieve range maximum limit from current filter on field 3 */
DBL_GetRange(hTable, 3, NULL, &MaxValue);

/**********/
125

Chapter 4. The Library Functions
/* Set one value filter on field 3 */
/* Equals DBL_SetFilter(hTable, 3, "=200") */
MinValue = 200;
DBL_SetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range limits from current filter on field 3 */
DBL_GetRange(hTable, 3, &MinValue, &MaxValue);
printf("MinValue and MaxValue now both contain the value 200\n");

/**********/

/* Remove filter on field 3 */
/* Equals DBL_SetFilter(hTable, 3, "") */
DBL_SetRange(hTable, 3, NULL, NULL);

/* Calling DBL_GetRange(hTable, 3, ..) now causes an exception */

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_SetView()

Function Sets the current sort order, key and filters on a table.

Category Table function

Syntax void DBL_SetView(DBL_HTABLE hTable, DBL_U8 *ViewStr);

hTable: Handle to the table
ViewStr: Pointer to the filter string

Remarks This function sets the sort order, key and filters on the current table. The string format
is the same as the SourceTableView property on forms.

Example DBL_HTABLE hTable;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

char ViewStr[250];
strncpy(ViewStr, "SORTING(No.)", sizeof(ViewStr));
DBL_SetView(hTable, (DBL_U8*)ViewStr);

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();
126

4.2 Library Functions in Alphabetical Order
DBL_Str_Compare_Database()

Function Compares two strings in a database to see which is the largest.

Category Database function

Syntax DBL_S32 DBL_Str_Compare_Database(const DBL_U8 *LeftStr, const DBL_U8
*RightStr);

LeftStr: the first string
RightStr: the second string

Remarks This function compares the Left and the Right string according to sort order and the
difference between upper and lower case letters.

Return values:

Example DBL_S32 retVal;
 retVal = DBL_Str_Compare_Database("ABCDE", "ABCDE"); /* retVal = 0 */
 retVal = DBL_Str_Compare_Database("ABCD", "ABCDE"); /* retVal = -1 */
 retVal = DBL_Str_Compare_Database("ABCDE", "ABCD"); /* retVal = 1 */
 retVal = DBL_Str_Compare_Database("ABCDe", "ABCDE"); /* retVal = -1 */
 retVal = DBL_Str_Compare_Database("AAA", "ÅÅÅ"); /* retVal = -1 */
 retVal = DBL_Str_Compare_Database("ABCDE", ""); /* retVal = 1 */

DBL_Str_2_Alpha()

Function Converts a string to an ALPHA variable.

Category Conversion function.

Syntax void DBL_Str_2_Alpha(DBL_U8* Alpha, DBL_S16 AlphaSize, DBL_U8* Str);

Alpha: Variable to receive the converted string
AlphaSize: Size of Alpha, in bytes
Str: String to be converted

Remarks DBL_Str_2_Alpha converts a string to a variable of the ALPHA type and stores it in
Alpha. If Alpha is not long enough to hold the converted string, the function raises an
exception.

For more information about ALPHA variables, see Appendix B.

Value Meaning

1 Left > Right

0 Left == Right

-1 Left < Right
127

Chapter 4. The Library Functions
Example DBL_U8 Alpha[12];
DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_Alpha(Alpha, sizeof(Alpha), "Number10");
/* Variable Alpha now contains the alpha value "Number10" */

DBL_Alpha_2_Str(Str, sizeof(Str), Alpha);
/* Variable Str now contains the string value "Number10" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_Str_2_BCD()

Function Converts a string to a BCD (decimal number).

Category Conversion function.

Syntax void DBL_Str_2_BCD(DBL_BCD* Bcd, DBL_U8* Str);

Bcd: BCD variable in which the converted string is placed
Str: String to be converted

Remarks DBL_Str_2_BCD converts Str to a BCD variable and stores it in Bcd. Str must be in a
format that prefixes negative numbers with a minus sign (-) and uses the period
character as a decimal point (U.S.format). Leading and trailing blanks are ignored
during conversion.

If Str does not contain a valid decimal number and cannot be converted, the function
will raise an exception.

Example DBL_BCD Bcd;
DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_BCD(&Bcd, "-1.2345");
/* Variable Bcd now contains the value -1.2345 */

Value String

1234 "1234"

-1234 "-1234"

1234.00 "1234"

1234.050 "1234.05"

11234.56 "1234.56"

.005 "0.005"
128

4.2 Library Functions in Alphabetical Order
DBL_BCD_2_Str(Str, sizeof(Str), &Bcd);
/* Variable Str now contains the string value "-1.2345" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_BCD_2_Str(Str, 6+1, &Bcd);
/* Variable Str now contains the string value "******" */
printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_Str_2_Date()

Function Converts a string to a DATE value.

Category Conversion function

Syntax void DBL_Str_2_Date(DBL_DATE *Date, DBL_U8 *Str);

Date: variable in which to place the converted value.
Str: string containing the value to convert.

Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];
DBL_DATE cDate;

/* ... */

/* Place date as string in Str. Note that the format depends */
/* upon the Regional Setting selected for the operating system */
sprintf(Str,"07-06-96");
/* Convert Str to DATE value */
DBL_Str_2_Date(&cDate,Str);

/* ... */

DBL_Str_2_DateFormula()

Function Converts a string to a DateFormula value.

Category Conversion function

Syntax void DBL_Str_2_DateFormula(DBL_DATEFORMULA *DateFormula, DBL_U8 *Str);

DateFormula: variable in which to place the converted value.
Str: string containing the value to convert.

Remarks This function converts a string to a dateformula.

Example DBL_U8 Str[50];
129

Chapter 4. The Library Functions
DBL_DATEFORMULA cDateFormula;

/* ... */

/* Place dateformula as a string in Str. Note that the format depends */
/* upon the Regional Setting selected for the operating system */
sprintf(Str,"CM+1M"); /* current month plus one month*/
/* Convert Str to DATEFORMULA value */
DBL_Str_2_DateFormula(&cDateFormula,Str);

/* ... */

DBL_Str_2_Datetime()

Function Converts a string to a Datetime value.

Category Conversion function

Syntax void DBL_Str_2_Datetime(DBL_DATETIME *Datetime, DBL_U8 *Str);

Datetime: variable in which to place the converted value.
Str: string containing the value to convert.

Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];
DBL_DATETIME cDatetime;

/* ... */

/* Place datetime as a string in Str. Note that the format depends */
/* upon the Regional Setting selected for the operating system */
sprintf(Str,"07-06-96 12:34:56");
/* Convert Str to DATETIME value */
DBL_Str_2_Datetime(&cDatetime,Str);

/* ... */

DBL_Str_2_Datetime_Ex()

Function Converts a string to an extended Datetime value.

Category Conversion function

Syntax void Str_2_Datetime_Ex(DBL_Datetime *DatetimeDest,DBL_U8 *Str, DBL_BOOL
UTC_Time);

DatetimeDest: variable in which to place the converted value.
Str: string containing the value to convert.
UTC_Time: whether or not to use UTC time.
130

4.2 Library Functions in Alphabetical Order
Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];
DBL_DATETIME cDatetime;

/* ... */

/* Place datetime as a string in Str. Note that the format depends */
/* upon the Regional Setting selected for the operating system */
sprintf(Str,"07-06-96 12:34:56");
/* Convert Str to DATETIME value */
DBL_Str_2_Datetime(&cDatetime,Str,true);

/* ... */

DBL_Str_2_Duration()

Function Converts a string to a DURATION.

Category Conversion function

Syntax void DBL_Str_2_Duration(DBL_DURATION *Duration, DBL_U8 *Str);

Duration: variable in which to place the converted value.
Str: string containing the value to convert.

Remarks This function converts a string and places the value in Duration.

Example DBL_U8 Str[50];
DBL_DURATION cDuration;

/* ... */

/* Place duration as string in Str. */
sprintf(Str,"3600000"); /* one hour */
/* Convert Str to DURATION value */
DBL_Str_2_Duration(&cDuration,Str);

/* ... */

DBL_Str_2_Field()

Function Converts a string to a field

Category Conversion function

Syntax void DBL_Str_2_Field)(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32
FieldNo,DBL_U8 *Str);
hTable: Handle to the table
hRec: Handle to the record.
131

Chapter 4. The Library Functions
FieldNo: Number of the field in which the converted value will be placed.
Str: String containing the value to convert.

Remarks This function converts/evaluates a string representation of a value into its normal
representation and places it in the field in record handle identified be FieldNo. The field
represented by FieldNo may be of any type.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 Str[11];

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Let's assume that: */
/* Field 10 in hRec is a BCD type field */
/* Field 11 in hRec is a TEXT type field */

DBL_Str_2_Field(hTable, hRec, 10, "1.23456");
/* Field 10 now contains the 1.23456 as a BCD */
DBL_Str_2_Field(hTable, hRec, 11, "This is a test");
/* Field 11 now contains the text "This is a test" */

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Str_2_Time()

Function Converts a string to a TIME value.

Category Conversion function

Syntax void DBL_Str_2_Time(DBL_TIME *Time, DBL_U8 *Str);

Time: variable in which to place the converted value
Str: string containing the value to convert

Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];
DBL_TIME cTime;
132

4.2 Library Functions in Alphabetical Order
/* ... */

/* Place time as string in Str. Note that the format depends */
/* upon the Regional Setting selected for the operating system */
sprintf(Str,"17.05.57");
/* Convert Str to TIME value */
DBL_Str_2_Time(&cTime,Str);

/* ... */

DBL_Str_2_S64()

Function Converts a string to a biginteger.

Category Conversion function

Syntax void Str_2_S64(DBL_S64 *S64Dest, DBL_U8 *Str);

S64Dest: The variable in which to place the converted value.
Str: The string to be converted.

Remarks This function converts the string to a BigInteger and places the result in S64Dest.

Example DBL_S64 b1;
DBL_U8 Str[50];
DBL_Str_2_S64(&b1, "12345");
DBL_S64_2_Str(Str, sizeof(Str), &b1);
printf("The value of the biginteger is %s", Str);

DBL_TableCaption()

Function Returns the caption for a specific table.

Category Table function

Syntax DBL_U8* DBL_TableCaption(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks This function returns the multilanguage caption of the table to which the handle
hTable is bound. The handle was created and bound to the table when DBL_OpenTable
was called.

This function cannot be used to change the table caption. Table captions can only be
changed in C/SIDE.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
133

Chapter 4. The Library Functions
DBL_OpenTable(&hTable, 15);

printf("Table number 15 has caption %s\n", DBL_TableCaption(hTable));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();

DBL_TableDup()

Function Duplicates the handle to a table.

Category Table function

Syntax DBL_HTABLE DBL_TableDup(DBL_HTABLE hSrcTable);

hSrcTable: Handle to the table that is to be copied

Remarks This function duplicates the handle to the table. The new handle includes any filters,
sorting and lists that were included in the original handle. It is only a copy of the
handle and not of the table. Both handles refer to the same table.

Example DBL_HTABLE hTable;
DBL_HTABLE hTableDup;
DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

hTableDup = DBL_TableDup(hTable);

DBL_CloseTable(hTableDup);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_TableIsSame()

Function Compares two tables to see if they have the same table definition.

Category Table function.

Syntax DBL_BOOL DBL_TableIsSame(const DBL_HTABLE hTable1, const DBL_HTABLE hTable2);

hTable1: Handle to the first table
hTable2: Handle to the second table that you want to compare the first table
with
134

4.2 Library Functions in Alphabetical Order
Remarks DBL_TableIsSame compares two tables to see if they have the same table definition. If
they have the same table definition, DBL_TableIsSame returns TRUE. If they do not have
the same table definition, DBL_TableIsSame returns FALSE.

DBL_TableName()

Function Retrieves the name of an open table.

Category Table function.

Syntax DBL_U8* DBL_TableName(DBL_HTABLE hTable);

hTable: Handle to a table

Remarks DBL_TableName returns the name of the table to which handle hTable is bound. The
handle was created and bound to the table when DBL_OpenTable was called.

This function cannot be used to change the table name. Table names can only be
changed in C/SIDE.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);

printf("Table number 15 is named %s\n", DBL_TableName(hTable));

DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_TestSysPermission()

Function Tests whether or not the user has permission to execute a specific object.

Category Database function

Syntax DBL_BOOL DBL_TestSysPermission(DBL_S32 ObjectNo);

ObjectNo: The number of the object that is to be tested.

Remarks DBL_TestSysPermission returns TRUE if the license file that the user is currently running
has execute permission for the specified object and FALSE if it does not.
135

Chapter 4. The Library Functions
DBL_TableNo()

Function Retrieves the number of the table with a specified table name.

Category Table function.

Syntax DBL_S32 DBL_TableNo(DBL_U8* TableName);

TableName: Table name

Remarks This function is only needed by applications that do not support a table number. It is
used to convert a name into a number for use by the DBL_Open Table function.

If TableName does not exist, 0 is returned.

For more information about tables, see the Application Designer’s Guide.

Example DBL_S32 TableNo;
DBL_HTABLE hTable;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");

/* Look up the number of TestTable */
TableNo = DBL_TableNo("TestTable");
if (TableNo != 0)
{
DBL_OpenTable(&hTable, TableNo);

/* ... */

DBL_CloseTable(hTable);
}
else
printf("Table does not exist\n");

DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_Time_2_HMST()

Function Converts a TIME variable to hours, minutes, seconds, and thousandths of a second.

Category Conversion function.

Syntax void DBL_Time_2_HMST(DBL_S32* h, DBL_S32* m, DBL_S32* s, DBL_S32* t, DBL_TIME
Time);

h: Variable to receive the value for hours
m: Variable to receive the value for minutes
s: Variable to receive the value for seconds
136

4.2 Library Functions in Alphabetical Order
t: Variable to receive the value for thousandths of a second
Time: TIME variable to be converted

Remarks DBL_Time_2_HMST dismantles a TIME variable and creates values for hours, minutes,
seconds and thousandths of a second. Any of the four output variables (h, m, s and t)
can be set to NULL, if they are not needed.

If this function is called with Time=zero (undefined), an exception is raised. To prevent
an exception being raised, test the value of the Time variable before you call this
function.

Example DBL_TIME Time;
DBL_S32 h,m,s,t;

DBL_Init();

DBL_HMST_2_Time(&Time, 14, 23, 30, 1);
/* Variable Time now contains the time 14:23:30.1 */

DBL_Time_2_HMST(&h, &m, &s, &t, Time);
/* Variables h,m,s and t now contain 14, 23, 30 and 1 */
printf("h,m,s and t now contain values %d, %d, %d and %d\n",
h,m,s,t);

DBL_Exit();

DBL_Time_2_Str()

Function Converts a TIME value to a string.

Category Conversion function.

Syntax void DBL_Time_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_TIME Time);

Str: string in which to place the converted value
StrSize: size (in bytes) of Str
Time: variable containing the TIME value to convert

Remarks DBL_Time_2_Str converts the TIME value in Time to a string. StrSize is the size of the
destination string: the number of bytes to place in Str. It is your responsibility to ensure
that the converted value is not truncated.

Example DBL_HTABLE hTable;
DBL_HREC hRec;
DBL_U8 resStr[50];
DBL_TIME *pTime;

DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);
DBL_OpenCompany("Test Company");
DBL_OpenTable(&hTable, 15);
hRec = DBL_AllocRec(hTable);
137

Chapter 4. The Library Functions
/* Retrieve a record: */
DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")
/* Get pTime from field 30: */
pTime = (DBL_TIME*)DBL_GetFieldDataAddr(hTable,hRec,30);
/* Convert pTime to a string: */
DBL_Time_2_Str(resStr,sizeof(resStr),*pTime);
/* Print out the string: */
printf("Time as string: %s\n", resStr);

DBL_FreeRec(hRec);
DBL_CloseTable(hTable);
DBL_CloseCompany();
DBL_CloseDatabase();
DBL_Exit();

DBL_UseCodeUnitsPermissions()

Function Allows you to use the permissions of a specific codeunit.

Category Security Function.

Syntax void DBL_UseCodeUnitsPermissions(DBL_S32 CodeUnitID);

CodeUnitID: the ID of the codeunit whose permissions you want to use.

Remarks In order to run this function your permissions in this database must include execute
permission for the codeunit whose permissions you want to use. The code unit you
point to must have the property CFRONTMayUsePermissions set to Yes.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* use the permissions for codeunit 55000 */

DBL_UseCodeUnitsPermissions(55000);

/* ... */

DBL_CloseDatabase();
DBL_Exit();

DBL_UserCount()

Function Counts the user IDs in the database.

Category Database function.

Syntax DBL_S32 DBL_UserCount(void);
138

4.2 Library Functions in Alphabetical Order
Remarks DBL_UserCount returns the number of users that are permitted to access the database
tables. Users are created and assigned user IDs in C/SIDE.

This function is used to determine whether the function DBL_Login is needed. If at least
one user is registered, all users are required to log in. The value returned by this
function does not reflect how many users are currently connected.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */
if (DBL_UserCount() > 0)
{
/* Log into database */
DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());
}

/* ... */

DBL_CloseDatabase();
DBL_Exit();

DBL_UserID()

Function Retrieves the login name of the current user.

Category Database function.

Syntax DBL_U8* DBL_UserID(void);

Remarks DBL_UserID returns the User ID that was used to connect to the current database from
CFRONT and accepted by DBL_Login. The returned value is a pointer to a string
containing the current User ID. If no DBL_Login has been issued, the function returns a
pointer to an empty string.

User IDs can only be created, modified and deleted within C/SIDE.

Example DBL_Init();
DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */
if (DBL_UserCount() > 0)
{
/* Log into database */
DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());
}

/* ... */

DBL_CloseDatabase();
139

Chapter 4. The Library Functions
DBL_Exit();

DBL_YMD_2_Date()

Function Converts year, month, day to a DATE variable.

Category Conversion function.

Syntax void DBL_YMD_2_DATE(DBL_DATE* Date, DBL_S32 y, DBL_S32 m, DBL_S32 d, DBL_BOOL
Closing);

Date: DATE variable into which the converted date will be
placed
y: Value for a year in the range 0001..9999
m: Value for a month in the range 1..12
d: Value for a day in the range 1..31
Closing: 1 if Date is designated a closing date, otherwise 0

Remarks DBL_YMD_2_Date constructs a DATE variable.

Example DBL_DATE Date;
DBL_S32 y,m,d;
DBL_BOOL c;

DBL_Init();

DBL_YMD_2_Date(&Date, 2000, 5, 17, 0);
/* Variable Date now contains the date May 17, 2000 */

DBL_Date_2_YMD(&y, &m, &d, &c, Date);
/* Variables y,m,d and c now contain 2000, 5, 17 and 0 */
printf("y,m,d and c now contain %d, %d, %d and %d\n",
y,m,d,c);

DBL_Exit();

DBL_YMDHMST_2_Datetime()

Function Converts year, month, day, hour, minute, second and thousandths of a second to a
DATETIME variable.

Category Conversion function.

Syntax void DBL_YMDHMST_2_DATETIME(DBL_DATETIME* Datetime, DBL_s32 y, DBL_s32 m,
DBL_s32 d, DBL_s32 h, DBL_s32 m, DBL_s32 s, DBL_s32 t);

Datetime: DATETIME variable that will receive the converted value
y: Value for the year
m: Value for the month
d: Value for the day
h: Value for the hours
m: Value for the minutes
140

4.2 Library Functions in Alphabetical Order
s: Value for the seconds
t: Value for the thousandths of a second

Remarks The datetime must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_Init();

DBL_YMDHMST_2_Datetime(&Datetime, 2005, 5, 17, 14, 30, 45, 1);
/* Variable Datetime now contains the datetime May 17, 2005, 14:30:45.1 */

DBL_Datetime_2_YMDHMST(&y, &m, &d, &h, &m, &s, &t, Datetime);
/* Variables y,m,d,h,m,s and t now contain 2005, 5, 17, 14, 30, 45 and 1 */
printf("y,m,d,h,m,s and t now contain %d, %d, %d, %d, %d, %d and
%d\n",y,m,d,h,m,s,t);

DBL_Exit();

DBL_YMDHMST_2_Datetime_Ex()

Function Converts year, month, day, hour, minute, second and thousandths of a second to an
extended DATETIME variable.

Category Conversion function.

Syntax void DBL_YMDHMST_2_Datetime_Ex(DBL_Datetime Datetime, DBL_S32 y, DBL_S32 m,
DBL_S32 d, DBL_S32 h, DBL_S32 m, DBL_S32 s, DBL_S32 t, DBL_BOOL UTC_Time);

Datetime: DATETIME variable that will receive the converted value
y: Value for the year
m: Value for the month
d: Value for the day
h: Value for the hours
m: Value for the minutes
s: Value for the seconds
t: Value for the thousandths of a second
UTC_Time: whether or not the value is in UTC time

Remarks This function converts year, month, day, hour, minute, second and thousandths of a
second to an DATETIME variable and allows you to specify whether it should be
displayed in UTC time or according to the local settings on the computer.

Example DBL_Init();

DBL_YMDHMST_2_Datetime(&Datetime, 2005, 5, 17, 14, 30, 45, 1, TRUE);
/* Variable Datetime now contains the datetime May 17, 2005, 14:30:45.1 */

DBL_Datetime_2_YMDHMST(&y, &m, &d, &h, &m, &s, &t, Datetime);
/* Variables y,m,d,h,m,s and t now contain 2005, 5, 17, 14, 30, 45 and 1 */
printf("y,m,d,h,m,s and t now contain %d, %d, %d, %d, %d, %d and
%d\n",y,m,d,h,m,s,t);

DBL_Exit();
141

Chapter 4. The Library Functions
142

Appendix A
C/FRONT Library Specifications

This appendix contains the specifications for the C/FRONT
library functions.

· C/FRONT Library Specifications

.
A.1 C/FRONT Library Specifications

The following sections describe the specifications of the C/FRONT library functions.

Type and Constant Definitions
The library offers an expanded variety of alphanumeric, numeric, boolean and string
types, known collectively as the DBL_ types.

Field Types
Data fields in a record can use any of the following nine field types. The right hand
column shows the sizes of the different field types:

typedef unsigned char DBL_U8;

typedef unsigned short int DBL_U16;

typedef signed long int DBL_S16;

typedef unsigned long int DBL_U32;

typedef signed long int DBL_S32;

typedef DBL_U32 DBL_BOOL;

typedef DBL_U32 DBL_DATE;

typedef DBL_U32 DBL_TIME;

typedef DBL_O32 DBL_O32

typedef DBL_TABLE* DBL_HTABLE;

typedef struct { DBL_U8 Exp; DBL_U8 Mant[9]; DBL_U8 Slack[2] } DBL_BCD;

typedef double DBL_DOUBLE

typedef biginteger { DBL_U32 LowPart; DBL_S32 HighPart } DBL_S64

typedef DBL_S64 DBL_Duration

typedef DBL_S64 DBL_Datetime

typedef struct { DBL_U32 Data1; DBL_U16 Data2; DBL_U16 Data3;
DBL_U8 Data4[8] }

DBL_GUID

#define DBL_Type_O32 /* 4 bytes */

#define DBL_Type_BOOL /* 4 bytes */

#define DBL_Type_BCD /* 12 bytes */

#define DBL_Type_STR /* Max Field Len + 1 byte */

#define DBL_Type_DATE /* 4 bytes */

#define DBL_Type_TIME /* 4 bytes */

#define DBL_Type_ALPHA /* Max Field Len + 2 bytes */

#define DBL_Type_S32 /* 4 bytes */

#define DBL_Type_BLOB /* Max 2 GB*/

#define DBL_Type_S64 /* 8 bytes */
144

A.1 C/FRONT Library Specifications
New field types cannot be defined. The type of a field can be retrieved with the
function DBL_FieldType.

Declaration of Variables
Record field variables are declared as shown in the following table. The right hand
column shows how the variable is supposed to be represented in the database.

#define My_Max_Len 10
/* Note that it is the length of the specific field */
/* in the database. *

The names of the variables describe how the corresponding field types are represented
in the C/SIDE Table Designer.

Field Classes
Data fields in a record belong to one of the following three classes:

The class of a field can be retrieved with the function DBL_FieldClass.

#define DBL_Type_Duration /* 8 bytes */

#define DBL_Type_Datetime /* 2 x 4 bytes */

#define DBL_TYPE_GUID /* 16 bytes (4+2+2+8) */

DBL_O32 Option; /* DBL_Type_O32 */

DBL_BOOL Boolean; /* DBL_Type_BOOL */

DBL_BCD Decimal; /* DBL_Type_BCD */

DBL_U8 Text[My_Max_Len+1]; /* DBL_Type_STR */

DBL_Date Date; /* DBL_Type_DATE */

DBL_Time Time; /* DBL_Type_TIME */

DBL_U8 Code[My_Max_Len+2]; /* DBL_Type_ALPHA */

DBL_S32 Integer; /* DBL_Type_S32 */

DBL_BLOB BLOB; /* DBL_Type_BLOB */

DBL_S64 BigInteger /* DBL_Type_S64 */

DBL_Duration Duration /* DBL_Type_DUR */

DBL_Datetime DateTime /* DBL_Type_DATETIME */

DBL_GUID GUID /* DBL_Type_GUID */

#define DBL_Class_Normal 0

#define DBL_Class_FlowField 1

#define DBL_Class_FlowFilter 2
145

.
Other C-Library Constant Definitions
See the cf.h file for definitions of all the constants.
146

Appendix B
The Alpha Type

This appendix contains a description of the Alpha data type
– an extended C string type.

.
B.1 Alpha Type

An Alpha type is an extended C string (zero-terminated string). The contents of the first
byte differ, depending upon the contents of the string:

If the string contains only the numeric characters '0'..'9', the first byte contains the
length of the string.

If the string contains non-numeric characters, the first byte contains the hex value FF.

This extra byte is used to give the correct weight to the strings when comparing two
alpha type fields.

Ordinary strings
char a[] = "990";
char b[] = "1000";

When compared, a is greater than b, and is sorted as follows:

"1000"
"990"

Alpha strings
char a[] = "\3""990"; /* \3 is the length of 990 */
char b[] = "\4""1000"; /* \4 is the length of 1000 */

When compared, a is less than b, and is sorted as follows:

"\3""990"
"\4""1000"
148

	Table of Contents
	Introduction to C/FRONT
	1.1 Introduction to C/FRONT
	This Manual
	The Contents of C/FRONT
	Installation
	System Requirements
	Standby and Hibernation
	Multilanguage

	1.2 Service Packs and Security Updates

	Review of Standard Operations
	2.1 The Standard Operations
	Determining which DLL to Use
	Initializing the Library
	Connecting to a Server and Opening a Database
	Microsoft SQL Server Option
	C/SIDE Database Server

	Opening a Company
	Opening a Table
	Using Filters
	Using Keys
	The Current Key

	Finding a Record
	Inserting a Record
	Modifying a Record
	Deleting a Record
	Editing a Field in a Record
	Handling Errors and Exceptions

	A Sample Application
	3.1 Building and Running the Sample Application
	The Sample Application
	Building the C/FRONT Sample Application
	Running the Sample Application on SQL Server
	Running the Sample Application
	Example

	The Library Functions
	4.1 Library Functions Grouped by Use
	4.2 Library Functions in Alphabetical Order
	DBL_AddKey()
	DBL_AddTableField()
	DBL_AllocRec()
	DBL_Allow()
	DBL_Alpha_2_Str()
	DBL_Ansi2OemBuff
	DBL_AssignField()
	DBL_AWT()
	DBL_BCD_2_Double()
	DBL_BCD_2_S32()
	DBL_BCD_2_Str()
	DBL_BCD_Abs()
	DBL_BCD_Add()
	DBL_BCD_Cmp()
	DBL_BCD_Div()
	DBL_BCD_IsNegative()
	DBL_BCD_IsPositive()
	DBL_BCD_IsZero()
	DBL_BCD_Make()
	DBL_BCD_Mul()
	DBL_BCD_Neg()
	DBL_BCD_Power()
	DBL_BCD_Round()
	DBL_BCD_RoundUnit()
	DBL_BCD_Sgn()
	DBL_BCD_Sub()
	DBL_BCD_Trunc()
	DBL_BWT()
	DBL_CalcFields()
	DBL_CalcSums()
	DBL_CheckLicenseFile()
	DBL_CloseCompany()
	DBL_CloseDatabase()
	DBL_CloseTable()
	DBL_CmpRec()
	DBL_CompanyName()
	DBL_ConnectServerandOpenDatabase()
	DBL_ConnectServer()
	DBL_CopyRec()
	DBL_CreateTable()
	DBL_CreateTableBegin()
	DBL_CreateTableEnd()
	DBL_CryptPassword()
	DBL_Date_2_Str()
	DBL_Date_2_YMD()
	DBL_DateFormula_2_Str()
	DBL_Datetime_2_Str()
	DBL_Datetime_2_Str_Ex()
	DBL_Datetime_2_YMDHMST()
	DBL_Datetime_2_YMDHMST_Ex()
	DBL_DeleteRec()
	DBL_DeleteRecs()
	DBL_DeleteTable()
	DBL_DisconnectServer()
	DBL_Double_2_BCD()
	DBL_DupRec()
	DBL_Duration_2_Str()
	DBL_EWT()
	DBL_Exit()
	DBL_Field_2_Str()
	DBL_FieldCaption()
	DBL_FieldClass()
	DBL_FieldCount()
	DBL_FieldDataOffset()
	DBL_FieldLen()
	DBL_FieldName()
	DBL_FieldNo()
	DBL_FieldOptionCaption()
	DBL_FieldOptionStr()
	DBL_FieldSize()
	DBL_FieldType()
	DBL_FindRec()
	DBL_FindSet()
	DBL_FindTopRec()
	DBL_FreeRec()
	DBL_GetCurrentKey()
	DBL_GetDatabaseName()
	DBL_GetFieldData()
	DBL_GetFieldDataAddr()
	DBL_GetFieldDataSize()
	DBL_GetFilter()
	DBL_GetLanguage
	DBL_GetLastErrorCode()
	DBL_GetRange()
	DBL_GetVersion()
	DBL_GetView()
	DBL_GUID_2_Str
	DBL_HMST_2_Time()
	DBL_Init()
	DBL_InitRec()
	DBL_InsertRec()
	DBL_KeyCount()
	DBL_KeySQLIndexFields()
	DBL_KeySumFields()
	DBL_LoadLicenseFile()
	DBL_LockTable()
	DBL_Login()
	DBL_ModifyRec()
	DBL_NextCompany()
	DBL_NextField()
	DBL_NextKey()
	DBL_NextRec()
	DBL_NextTable()
	DBL_Oem2AnsiBuff
	DBL_OpenCompany()
	DBL_OpenDatabase()
	DBL_OpenTable()
	DBL_OpenTemporaryTable()
	DBL_RecCount()
	DBL_ReleaseAllObjects()
	DBL_RemoveFilter()
	DBL_RenameRec()
	DBL_SelectLatestVersion()
	DBL_S32_2_BCD()
	DBL_S32_2_S64()
	DBL_S64_2_S32()
	DBL_S64_2_Str()
	DBL_SetCurrentKey()
	DBL_SetExceptionHandler()
	DBL_SetFilter()
	DBL_SetLanguage()
	DBL_SetMessageShowHandler()
	DBL_SetNavisionPath()
	DBL_SetRange()
	DBL_SetView()
	DBL_Str_Compare_Database()
	DBL_Str_2_Alpha()
	DBL_Str_2_BCD()
	DBL_Str_2_Date()
	DBL_Str_2_DateFormula()
	DBL_Str_2_Datetime()
	DBL_Str_2_Datetime_Ex()
	DBL_Str_2_Duration()
	DBL_Str_2_Field()
	DBL_Str_2_Time()
	DBL_Str_2_S64()
	DBL_TableCaption()
	DBL_TableDup()
	DBL_TableIsSame()
	DBL_TableName()
	DBL_TestSysPermission()
	DBL_TableNo()
	DBL_Time_2_HMST()
	DBL_Time_2_Str()
	DBL_UseCodeUnitsPermissions()
	DBL_UserCount()
	DBL_UserID()
	DBL_YMD_2_Date()
	DBL_YMDHMST_2_Datetime()
	DBL_YMDHMST_2_Datetime_Ex()

	C/FRONT Library Specifications
	A.1 C/FRONT Library Specifications
	Type and Constant Definitions
	Field Types
	Declaration of Variables

	The Alpha Type
	B.1 Alpha Type

