
Microsoft DynamicsTM NAV 5.00
Application Designer’s Guide

APPLICATION DESIGNER’S GUIDE

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted in examples herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred. Complying with all applicable copyright laws is
the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Server, Windows Vista, Application Server for
Microsoft Dynamics NAV, AssistButton, C/AL, C/FRONT, C/SIDE, FlowField, FlowFilter,
C/SIDE Database Server for Microsoft Dynamics NAV, Microsoft Business
Solutions–Navision, Microsoft Dynamics NAV, Microsoft Dynamics NAV Debugger,
Navision, NAV ODBC, SIFT, SIFTWARE, SQL Server, SumIndex, SumIndexField are either
registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

All other trademarks are property of their respective owners.

PREFACE

This manual provides information about the C/SIDE® development system. It is part of
the documentation and Help materials for Microsoft Dynamics™ NAV.

When you create a C/SIDE application, you combine different types of application
objects into a whole that solves a business problem. Each of the seven types of
application objects available has its own part in this manual.

The manual is divided into 12 parts. Each part contains one or more chapters. The first
chapter in a part always deals with the fundamentals, for example, "Form
Fundamentals," and the succeeding chapters present more advanced information.

In addition to this manual, C/SIDE has an online Reference Guide. Here you can find
reference information about programming issues: functions, triggers, properties, and
so on.

You may also find it useful to refer to the following manuals and online Help:

Installation & System Management: C/SIDE Database Server for Microsoft
Dynamics NAV
This manual explains the more technical aspects of Dynamics NAV. You will find
information about user administration, backup procedures and other items that are
also relevant for application developers.

Installation & System Management: SQL Server Option for Microsoft
Dynamics NAV

This manual explains how to install and maintain the SQL Server Option for Dynamics
NAV. This program is designed to run on SQL Server 2000.

Installation & System Management: Application Server for Microsoft
Dynamics NAV
This manual explains how to install and maintain NAV Application Server.

Development Guide for Communication Components

This online Help describes the Dynamics NAV Communication Component, Dynamics
NAV Named Pipe Bus Adapter and Dynamics NAV MS-Message Queue Bus Adapter.
These components allow applications to communicate easily with each other.

TABLE OF CONTENTS
PART 1 ARCHITECTURE . 1

Chapter 1 Architecture and Installation .3

The Microsoft Dynamics NAV Client/Server Environment 4

Installation . 6

Chapter 2 The Server Options. .13

The Different Server Options . 14

Chapter 3 The Dynamics NAV Security Model29

Security . 30

Business Areas and Granules . 36

PART 2 FUNDAMENTALS . 41

Chapter 4 C/SIDE Fundamentals .43

The C/SIDE User Interface . 44

What Is a C/SIDE Application?. 47

The Physical and the Logical Database . 49

Chapter 5 Designing a C/SIDE Application .51

Introduction to C/SIDE Application Design. 52

PART 3 TABLES. 57

Chapter 6 Table Fundamentals. .59

What Is a Table?. 60

Viewing and Modifying Properties . 66

Defining Keys . 71

Identifiers, Data Types and Data Formats in the SQL Server Option for
Dynamics NAV . 78

Saving tables and Viewing Sorted Data . 84

Special Table Fields . 87

Dividing the Database into Companies . 94

Chapter 7 Customizing and Maintaining Tables 95

Using Table and Field Triggers . 96

Setting Relationships Between Tables . 98

Changing Tables That Contain Data. 104

Linked Objects . 105

Chapter 8 Special C/SIDE Tables. .109

What Is a Temporary Table? . 110

What Is a System Table? . 112

What Is a Virtual Table? . 117

Table of Contents
PART 4 FORMS . 137

Chapter 9 Form Fundamentals .139

What Are Forms? . 140

Creating Forms. 142

Saving, Compiling and Running Forms . 150

Chapter 10 Designing Forms .151

Form and Control Properties . 152

Types of Controls . 155

Adding Controls. 157

Selecting, Moving and Adjusting Controls . 160

Tools for Customizing Controls . 164

Setting Control Properties . 165

Container Controls . 169

How to Use Controls in Applications . 171

Chapter 11 Extending the Functionality of Your Forms 185

Main Forms and Subforms . 186

Looking Up Values and Validating Entries. 189

Drilling Down to the Underlying Transactions . 193

Launching Another Form . 195

Designing Menu Buttons . 196

Form and Control Triggers. 200

Form Types and Characteristics. 203

PART 5 REPORTS . 209

Chapter 12 Report Fundamentals .211

What Are Reports?. 212

What Happens When a Report Runs? . 215

The Report Designer . 218

Saving, Compiling and Running Reports . 221

Chapter 13 Designing Reports .223

Report Properties. 224

Designing a Simple Report. 228

Designing a More Advanced Report . 236

Chapter 14 Extending Report Functionality241

Grouping and Totaling . 242

Triggers in Reports . 249

Advanced Sample Reports . 250

Creating a Simple Document. 264

Creating a Nonprinting Report . 270

Types of Report . 274

Table of Contents
PART 6 CODEUNITS. 277

Chapter 15 Codeunit Fundamentals .279

What Is a C/SIDE Codeunit?. 280

Creating Codeunits . 282

Using Codeunits. 289

Chapter 16 Introducing the C/AL Language295

What Can You Do with C/AL? . 296

What Are Statements, Expressions, and Operators? 297

Introducing the Elements of C/AL Expressions . 305

The C/AL Control Language . 314

Chapter 17 Using C/AL .323

Overview . 324

System-Defined Variables . 326

Handling Runtime Errors . 327

The Essential C/AL Functions . 328

Chapter 18 Debugging C/AL Code. .345

What Are Bugs? . 346

The Microsoft Dynamics NAV Debugger. 352

The Code Coverage Tool . 360

Chapter 19 Extending C/AL .363

What Is COM? . 364

Using COM Technologies in C/SIDE . 366

Using C/SIDE as an Automation Controller . 370

Receiving Events in C/SIDE. 386

Using Custom Controls from C/SIDE . 394

Acquiring Controls. 402

PART 7 DATAPORTS . 403

Chapter 20 Dataports .405

What Are Dataports?. 406

Designing Dataports . 411

Exporting Data . 417

Importing Data. 425

PART 8 XMLPORTS. 437

Chapter 21 XMLports .439

XMLport Fundamentals . 440

Designing XMLports . 442

XMLport Examples. 445

Validating Data . 450

XMLports and Business Notifications . 452

Table of Contents
PART 9 MENUSUITE OBJECTS . 453

Chapter 22 MenuSuite Objects. .455

Menu Suite Fundamentals . 456

Customizing a Menu Suite . 457

Exporting a MenuSuite Object . 460

Upgrading Menu Suite Content . 462

PART 10 MULTILANGUAGE FUNCTIONALITY . 463

Chapter 23 Multilanguage Functionality. .465

Multilanguage Functionality . 466

Developing Multilanguage-Enabled Applications . 472

Learning the Code Base Language . 476

Number Ranges for Text Constants . 479

PART 11 BEYOND THE BASICS . 481

Chapter 24 SumIndexFields .483

SumIndexFields . 484

SIFT and the SQL Server Option for Dynamics NAV 486

Chapter 25 Type Conversion. .505

Type Conversion in Expressions . 506

Type Conversion Mechanisms . 508

Chapter 26 Numbering in Dynamics NAV. .515

How Does Number Sorting Work? . 516

Chapter 27 C/SIDE in Multiuser Environments519

Ensuring Data Integrity in a Multiuser Environment 520

Locking in Dynamics NAV – a Comparison of the two Server Options . . . 527

Chapter 28 Caption Class Functionality. .531

Syntax . 532

Function Code . 537

Chapter 29 Supporting Record Level Security 545

Record Level Security . 546

Chapter 30 Performance .559

The DBMS Cache . 560

The Commit Cache . 562

The Command Buffer . 563

Keys, Queries and Performance. 565

C/AL Database Functions and Performance on SQL Server 567

Configuration Parameters . 568

Login Stored Procedure on the SQL Server Option . 572

Table of Contents
PART 12 APPENDIXES . 575

Appendix A C/SIDE Specifications .577

Specifications for the DBMS. 578

Specifications for C/SIDE Application Objects . 579

Appendix B Report Flow Charts .581

Report Flow Charts . 582

Report.Run . 583

DataItem.Run . 584

Section.Run . 585

Header.Run . 586

Footer.Run . 587

TransHeader.Run . 588

TransFooter.Run. 589

GroupHeader.Run . 590

GroupFooter.Run . 591

Body.Run . 592

NewPage. 593

GetRecord . 594

Appendix C Dataport Flow Charts .595

Dataport Flow charts. 596

Dataport.Import/Export . 597

DataItem.Export . 598

VariableRecord.Export. 599

FixedRecord.Export . 600

DataItem.Import . 601

VariableRecord.Import . 602

FixedRecord.Import . 603

Appendix D NDBCS – The Database Driver.605

NDBCS – the Database Driver . 606

A Brief History of Performance Improvements . 614

Table of Contents

Part 1
Architecture

Chapter 1

Architecture and Installation

In this chapter, you learn about the architecture of Microsoft
Dynamics™ NAV and how to install the Dynamics NAV
client, C/SIDE Database Server and SQL Server.

This chapter contains the following sections:

· The Microsoft Dynamics NAV Client/Server Environment

· Installation

Chapter 1. Architecture and Installation
1.1 The Microsoft Dynamics NAV Client/Server Environment

Microsoft Dynamics NAV is a two-tier application. It consists of a Database
Management System (DBMS) that resides on the server, and a Graphical User Interface
(GUI) that resides on each client. You can also configure the client as a stand-alone
installation, which means that the client functions as a server and a single client in one.

Dynamics NAV has two database options: the standard Dynamics NAV database and
SQL Server database. You can choose to use the database engine that is built into each
client to run the standard Dynamics NAV database as a stand-alone installation. The
database can also be run from a server, which allows many clients to connect
simultaneously to the same database. The server runs on a designated computer that
all the clients communicate with.

You can also install the SQL Server Option for Dynamics NAV as a stand-alone
installation. To do this, you install the Microsoft SQL Server Express with the client. This
is a small version of SQL Server. During the installation, the demonstration database is
attached to this local instance of SQL Server and is opened the first time you start
Dynamics NAV.

If you want to run the SQL Server Option as a client/server installation, you install SQL
Server on the server computer. You must then install the Dynamics NAV client on all
the client computers.

In the SQL Server Option, the client usually uses the TCP/IP protocol to communicate
with SQL Server although it can also use an ODBC connection. In the C/SIDE Database
Server option, the client generally uses the TCP/IP protocol to communicate with the
server.

Once the server and clients are configured, the user does not need to worry about the
way the server and clients work together. It appears seamless to the user.

NAV Application Server is a middle-tier server that supports an n-tier architecture,
which executes business logic without user intervention. NAV Application Server allows
you to communicate with external services.

NAV Application Server acts as a client towards a database server and can act as a
server for other services. When you start NAV Application Server, it opens a predefined
database and executes the C/AL code in a predefined codeunit.

NAV Application Server can communicate with both C/SIDE Database Server and the
SQL Server Option in the same way as a Dynamics NAV client. NAV Application Server
only supports Windows Authentication and automatically reconnects to the database
server if there is a problem with the network.

The Dynamics NAV C/SIDE Client
The Dynamics NAV C/SIDE Client is basically responsible for the user interface, but it
actually does much more. The client can connect directly to a standard database file
without going through the server. This is the stand-alone setup that was mentioned
earlier. The client is also responsible for executing all the business logic. The client reads
objects from the database and is also responsible for running the objects and
controlling their behavior. Most of the Dynamics NAV application runs on the
individual clients.
4

1.1 The Microsoft Dynamics NAV Client/Server Environment
The Server
If the clients do most of the work, what is left for the server to do? The standard server
component of Dynamics NAV:

• controls the number of users that can connect to the database at one time.
• controls access to the data through locking.
• keeps track of all the read and write transactions performed by each user.
• sends data to each client, as requests are made.
• performs all the key-based filtering and calculates the SumIndexFields.
• caches data that can be requested again.

This is not a complete list and is only designed to give you an idea of what the server
does. Microsoft SQL Server also does all of these things. One thing that the standard
server does that SQL Server does not, is keep track of the different versions of the same
record that different users have accessed. We will discuss this in later chapters.

Together, the client and the database server provide a seamless solution.
5

Chapter 1. Architecture and Installation
1.2 Installation

As stated earlier, you can install Dynamics NAV as a client/server installation or as a
stand-alone client installation.

There are several ways that you can set up the client/server installation. In this chapter,
we will look at the various ways that you can install the client and the server. We will
also cover some of the most common mistakes that you must avoid.

To ensure that the customer’ installation is installed successfully:

• bring the Dynamics NAV installation DVD.
• bring the customer’s database.
• bring the customer’s license.
• test the installation, including the server and client connections.

What to Avoid During Installation
Ensure that you do not do the following on the computer where the database is stored:

• Do not use the disk compression provided by the operating system or any programs
such as DoubleSpace, Stacker or DriveSpace.

• Limit the number of services and programs that are run simultaneously because they
slow down processing.

• Do not use Lazy Write or any other caching programs.

Important

Use Windows Server 2003, Windows XP as the operating system for the server.
Use Windows Vista, Windows XP or Windows Server 2003 as the operating system for
the client.

The Product DVD
When you insert the DVD, an HTML page automatically opens in your browser. This
page contain links to the installation programs as well as the documentation about the
Microsoft Dynamics NAV suite of programs.

With the Dynamics NAV product DVD you can install:

• a Dynamics NAV stand-alone client installation.
• a Dynamics NAV stand-alone client installation that runs on the Microsoft SQL

Server Express Database Engine.
• C/SIDE Database Server for Microsoft Dynamics™ NAV so that you can set up a

Dynamics NAV client/server installation.
• the Application Server for Microsoft Dynamics™ NAV.
• the Commerce Gateway components.
• the Business Notification Server for Microsoft Dynamics™ NAV
• the Automated Data capture System for Microsoft Dynamics™ NAV
• Microsoft Dynamics™ NAV ODBC
6

1.2 Installation
You must install Microsoft SQL Server separately if you want to set up a Dynamics NAV
client/server installation that runs on SQL Server.

Installing the Dynamics NAV C/SIDE Client
Click Client, Dynamics NAV Client and a standard Windows installation program opens
and guides you through the installation process.

When you are installing the client you can select the features that you want to install.
the features that you can select include:

• Help – the online Help for Dynamics NAV.
• Demo Database – a Dynamics NAV database that contains a demonstration

company. This database will be opened automatically the first time you start
Dynamics NAV.

• Backup of Demo Database – a Dynamics NAV backup of the demonstration
database. You can restore this backup into a new database.

• Commerce Integration – the Commerce Gateway and Commerce Portal
components. You must install these components if you want to run either
Commerce Gateway or Commerce Portal. If you select this feature, the Microsoft
.NET Framework is also installed. The .NET Framework is not removed when you
uninstall the Dynamics NAV client. It is given an entry of its own in the Add or
Remove Programs window and you can uninstall it from there.

• Business Notification Manager – this feature allows you to automatically send e-
mails to your employees and business partners informing them of business events.

• Employee Portal – the Employee Portal components. You must install these
components if you want to run Employee Portal.

• Outlook Add-in – this feature creates a toolbar in Outlook that allows you to open a
Dynamics NAV Contact or a Dynamics NAV To-do from the corresponding Outlook
item.

• Dynamics NAV Gantt Server – an ActiveX component that allows production
managers to plan shop floor production with the help of Gantt charts and update
their schedules in Dynamics NAV.

Files on the Hard Drive
When the installation program is finished, you can explore the directory where the files
were installed. Here is a list of some of the files that are installed:

fin.exe Executable file for starting the Dynamics NAV C/SIDE client for C/SIDE
Database Server or stand-alone.

finsql.exe Executable file for starting the Dynamics NAV client for the SQL Server
Option.

fin.flf License file that determines the functionality of the installation based on
the granules purchased.

cronus.flf Sample license file renamed to the name of the demonstration company.

database.fdb Default physical file used for the database, which contains all the objects
and data.

master.chm Main Help file for the application.
This file is stored in a sub-directory along with all of the other Help files.
7

Chapter 1. Architecture and Installation
For more information about installing the client, see the manual Installation & System
Management: for the server option that you want to install. These manuals are
available on the product DVD.

The Stand-Alone Client Installation
The simplest setup that a customer can ask for is a one-user system. We call this a
stand-alone client. This type of setup is very straightforward. You install the entire client
on the computer that the user will be using. You must then replace the database.fdb
file with the customized database you created for the customer. Finally, replace the
fin.flf license file that was installed with the executables with the customer’s license
file.

To install a stand-alone client for SQL Server, you must install the Microsoft SQL Server
Express along with the client. This installs a local instance of SQL Server and attaches a
demonstration SQL Server database to the server. When you start the client, it
automatically opens the demonstration database.

You can also create your own database on the server, but we’ll have more about that
later.

The C/SIDE Database Server Client/Server Installation
This type of setup involves one C/SIDE Database Server and several clients. Here, you
must start by installing the stand-alone client as described earlier on the server
computer. (This is the first computer system that will run the server program.) By doing
this first, you will assure that you have the customer’s database and license installed.
The only difference here is that you might want to move the database file either to its
own directory or to its own drive. In a later chapter, we will discuss the database file
and how best to set it up.

Once you have installed the client on the server, you can run the C/SIDE Database
Server installation program. This is a completely separate installation program.

C/SIDE Database Server comes with a standard Windows installation program that will
guide you through the installation process. If you have difficulty understanding any of
the decisions that you must make during the installation, consult the manual
Installation & System Management: Database Server for the Dynamics NAV C/SIDE
Client. This manual contains a detailed step by step description that will guide you
through the installation process.

Important

We recommend that you practice installing C/SIDE Database Server before installing it
for a customer.

The installation program will prompt you for the location of the database and the
license file. Select the customer’s database file and license. The installation program will
also create a service and start the service at the end of the installation. It is this service
that runs the Dynamics NAV standard server. Once the installation is complete, the
server is up and running.

The next step is to install the Dynamics NAV client on all the client computers. This
installation is similar to the stand-alone client installation, except for some omissions.
You should only install the client. This is the Minimum installation – you do not need a
8

1.2 Installation
database file. You do not need the customer’s database, as it resides on the server.
However, you should still copy the customer’s license onto each client.

Once the client is installed, the final step is to set up a shortcut on the desktop for the
user and test it. The shortcut should include certain parameters, as in the following
example:

"C:\Program Files\...\fin.exe"
servername=MyServer,nettype=TCPS

In this example, servername specifies the name of your C/SIDE Database Server, and
nettype specifies the protocol being used. By putting these parameters directly into
the shortcut, the settings will not be lost and the user only needs to remember their
password.

The final step is to double-click the shortcut and test the connection. If an error occurs,
it is usually because the client cannot connect to the server. Depending on the protocol
being used, there are certain steps you can take to identify the problem. For more
information about working with these protocols, see the section Troubleshooting the
Database Connection.

If the connection worked, just repeat the client installation on each client computer
and you are finished.

Running as a service If you want to run Dynamics NAV Database Server as a service or use the
installasservice command line parameter when you start the server and use TCPS
as the network type, you must ensure that the service is running as the NT
Authority\Network Service account or the Local System account. The NT
Authority\Network Service account only exists on Windows XP and Windows Server
2003. If you are running Windows 2000 Server, you should create an account with least
privileges for the service or else the service will be assigned a Local System account.
This account should at the most have the same privileges as the normal Users account
or be a domain account that is not an administrator either in the domain or on any
local computer.

To have the highest level of security, we recommend that you run your Dynamics NAV
Database Server on Windows XP or on Windows Server 2003, use TCPS as the network
protocol and use the NT Authority\Network Service account as the service account.

You must also remember to give the NT Authority\Network Service account or the user
account that the server is running under access to the database file(s) to ensure that
the users can connect to the database.

To give the NT Authority\Network Service account read and write access to a database
file on Windows XP:

1 In Windows Explorer, navigate to the folder that contains the database file.

2 Select the database file, right-click it and click Properties.

3 In the Properties window, click the Security tab and under the Group and user names
field, click Add.

4 In the Select Users, Computers, or Groups window, enter Network Service and click
OK.
9

Chapter 1. Architecture and Installation
5 NETWORK SERVICE has been added to the Group and user names field in the
Properties window.

6 Select NETWORK SERVICE and in the Permissions field give it Read and Write
permission.

Installing the Microsoft SQL Server Option for the Dynamics NAV C/SIDE Client
The setup changes quite drastically when you are using the SQL Server Option. Follow
the Microsoft SQL Server guidelines when installing SQL Server on the server computer.

In this environment, there is only one thing from the Dynamics NAV product DVD that
needs to be installed on the server machine – two SQL Server extended stored
procedures. From the server computer, access the Dynamics NAV product DVD. In the
folder $:\SQL_ESP, where the $ is the DVD drive, click the file xp_ndo.exe. This file
contains the extended stored procedures. When prompted, enter the path to the BINN
subfolder of the SQL Server installation folder. The unzipped xp_ndo.dll file must be
stored in this folder on SQL Server.

Once SQL Server is installed and working, you can begin installing Dynamics NAV on
the client computers.

Once the clients are installed, the final step is to set up a shortcut on the desktop for
the user and test it. The shortcut should include certain parameters, as in the following
example:

"C:\Program Files\...\finsql.exe"
servername=MyServer,nettype=Named Pipes,ntauthentication=yes

Note that the name of the executable file (when creating the shortcut) is finsql.exe,
and not fin.exe.

When a Dynamics NAV client connects to the server for the first time, the program will
prompt you to upload the license to the server.

Adding the Extended Stored Procedure Manually
You can use a Microsoft tool such as Enterprise Manager to add the xp_ndo.dll file
to the extended stored procedures already installed on SQL Server. The names of the
extended stored procedures must be xp_ndo_enumusergroups and
xp_ndo_enumusersids.

Note

If you want to change the security model that is used in the NAV SQL database, you
must add both of the extended stored procedures to SQL Server.

To add the extended stored procedures:

1 Open Enterprise Manager.

2 Expand the server and expand the databases.

3 Expand the master database and the Extended Stored Procedures.
10

1.2 Installation
4 Click Action, New Extended Stored Procedure and the Extended Stored Procedures
Properties widow opens.

5 Enter the name of the extended stored procedure and browse to the location where
it is currently stored.

6 Click Ok to add the extended stored procedure.

After the extended stored procedures have been successfully added to the server, you
must grant execute permissions to the "public" role.

To grant execute permission to the "public" role:

1 Open Enterprise Manager.

2 Expand the server and expand the databases.

3 Expand the master database and the Extended Stored Procedures.

4 In the right side panel, right-click the Extended Stored Procedure called
xp_ndo_enumusersids and select Properties.

5 Select Permissions and grant EXEC rights to both "public" and "guest."

Repeat this procedure for the other extended stored procedure.

Installing Multiple C/SIDE Database Servers
The next challenge you may face is to install more than one C/SIDE Database Server on
the same computer. Remember that the services that run on the server machine
generally use the TCP/IP protocol. The trick to installing more than one service on the
same computer is to get the two services to communicate on different levels using the
same protocol.

When you use TCP/IP, the port must be changed for the services. To change the port,
you must change the services file on the server. This file is normally located in the
following directory on Windows XP:
C:\WINDOWS\system32\drivers\etc\services.

If you are not familiar with changing this file, you may want to find someone who is
knowledgeable about TCP/IP to help you. Once you have changed this on the server, it
will have to be changed on every client as well. Again, you can change the shortcuts on
each client to specify the server name.

Note

There can be certain restrictions that prevent a customer from having more than one
C/SIDE Database Server running at their site. A single license file is meant to be used
with one, and only one, server.

Troubleshooting the Database Connection
A database connection problem can occur when your C/SIDE Database Server is
running correctly, but the clients cannot connect to it.
11

Chapter 1. Architecture and Installation
TCP/IP
The following steps will help you determine why your Dynamics NAV clients cannot
connect to your C/SIDE Database Server when you are using the TCP/IP protocol:

1 Launch the Dynamics NAV client and attempt to connect to the C/SIDE Database
Server using the name of the Service (excluding the "C/SIDE Database Server" prefix).

If this succeeds, the client can connect to the server and the service through TCP/IP
using the name of the service. If this fails, Dynamics NAV is having a problem
accessing TCP/IP. It could be a problem with the host’s file. You must continue to the
next step.

2 Open a command prompt and ping the IP address of the server (syntax: ping
###.###.###).

If this succeeds, this client computer can connect to the server machine. Continue to
step 3. If this fails, the problem is the TCP/IP connection to the server computer and
not the Dynamics NAV program. You cannot continue.

3 Go to a command prompt and ping the name of the service (excluding the
"Dynamics NAV Server" prefix; syntax: ping servicename). Note that you are not
pinging the service. You are actually pinging the server in another way.

If this succeeds, the host’s file is set up correctly. Your setup is correct.

If this fails, the host’s file does not contain an entry that tells TCP/IP where the service is
running. Change the host’s file to include an entry that has the name of the service
(excluding the "C/SIDE Database Server" prefix) and the correct IP address of the server.

Service Packs and Security Updates

The installation is not complete until you have installed the latest service packs and
applied the latest security updates to your system. Keeping your system up-to-date by
installing the latest service packs is one of most important things you can do in
managing the security of your system.

You should visit Microsoft Update and install all the relevant updates on every
computer in your Dynamics NAV installation. We also recommend that you enable
Automatic Updates on each computer so that they can receive security & critical
updates automatically.
12

Chapter 2

The Server Options

In this chapter, you learn about some of the important
differences between running the Dynamics NAV C/SIDE
Client on C/SIDE Database Server and on the SQL Server
Option.

This chapter contains the following sections:

· The Different Server Options

Chapter 2. The Server Options
2.1 The Different Server Options

As stated earlier, Dynamics NAV can run on two different servers – C/SIDE Database
Server and Microsoft SQL Server.

This chapter is a brief introduction to the two server options that Dynamics NAV
supports. It describes some of the most important differences between the two server
options and explains some of the advantages that the SQL Server Option has over
C/SIDE Database Server.

To the client these two server options look and perform exactly the same. However,
there are some important differences between them including:

• the way you create a database.
• the backup facilities that are available.
• the ability to access the data in the database with third party tools.
• the security features.
• the way that SIFT™ works.
• performance monitoring
• scalability
• multi-processor support

We will elaborate on these topics in the following sections.

Creating Databases
When you create a database, you must follow different procedures and make different
decisions depending on the server option that you are using.

C/SIDE Database Server
To create a database on C/SIDE Database Server, open a client and click File, Database
New and the New Database window appears:

In this window you can:

• select the computer on which the server is installed.
• specify the name and location of the database.
• specify the size of the database file.

If you want to divide the database into separate files and store them on different disks,
you must expand the database.
14

2.1 The Different Server Options
To expand the database, click File, Database, Expand and the Expand Database
window appears:

In this window you can specify the size of the file you want to add. If however you want
to add more than one file and specify that these database files should be stored on
different locations, click Advanced to open the Expand Database (Advanced)
window:

Each line that you enter in this window is a new database file. We recommend that
these files are all the same size because this ensures an even distribution of the
database across the different files and drives.

The more physical disks that you use, the greater the speed and performance of C/SIDE
Database Server. However, you can only divide a database into a maximum of 16 parts
on C/SIDE Database Server. Any more parts than that and performance will suffer.

Important

After you have created the database files you must restart the client and reconnect to
the server to rebuild the list of free blocks. You can now restore the Dynamics NAV
database backup file. The database will now be distributed evenly across the all the
database parts and physical disks.

SQL Server Option
Before you can access SQL Server 2005from Microsoft Dynamics NAV, you must set
trace flag 4616 on SQL Server 2005. If you are running on SQL Server 2000 you do not
have to enable the trace flag.
15

Chapter 2. The Server Options
If your SQL Server installation has the default name MSSQLSERVER, then the trace flag
is set automatically. You must remember to re-start SQL Server.

If your SQL Server installation has a different name, then follow the steps outlined
below:

Enabling a trace flag To enable the trace flag:

1 Open SQL Server Configuration Manager.

2 In the left-hand panel, right-click SQL Server 2005 Services and click Open to see all
the services:

3 In the right-hand panel, right-click SQL Server (MSSQLSERVER) or SQL Server
(SQLEXPRESS) and select Properties to open the Properties window:

4 In the Properties window, click the Advanced tab and expand the Advanced option
if necessary.
16

2.1 The Different Server Options
5 Click the Startup Parameters property and open the drop down list:

6 Enter ;-T4616 at the end of the line in the drop down list.

7 Restart SQL Server.

Creating a Database
Creating a database in the SQL Server Option is a more streamlined process and allows
you to specify some general database options.

To create a database in the SQL Server Option:

1 Click File Database, New and the Select Server window appears:

In this window you:

• select the server that you want to create the database on.
• select the type of authentication that you want to use to logon to the server.
• enter your User ID and password if you select Database Server Authentication.
• select the Net Type that you want to use (the Advanced tab).
17

Chapter 2. The Server Options
2 When you have done this, click OK and the New Database window appears:

As you can see this window contains several tabs.

On the General tab you see the name of the server that you selected and you enter the
name of the database that you are going to create.

On the Database Files tab, you can see that the first two database files have already
been created. Each line that you enter in this window is a new database file. You can
specify the size of and the location where the file is stored. Furthermore, you can
specify how much the file can grow by, whether is can grow without restriction or
whether it should have a maximum size.

On the Transaction Log Files tab, you can specify the same things for the transaction
log file(s) that are updated as you use the database. A transaction log is a file
containing details of all the transactions that are performed in the database. This
information is used after a database crash, for example, to recreate all the transactions
that were completed since the last backup was made.

On the Collation tab, you specify the type of collation that is used in the database. The
collation is probably the most important option that you set when you create a
database. The collation determines the way that data is ordered and sorted in the
database and this influences the performance of your database. Changing the collation
after you have created the database is a time consuming process.

The SQL Server Option for Dynamics NAV allows you to choose between Windows
collations and SQL collations:

• A Windows collation corresponds to the collations supported by the Windows
operating systems, where they are known as Regional and Language Options.

• SQL collations are the original collations introduced in SQL Server 7.0 and are still
supported for backwards compatibility.
18

2.1 The Different Server Options
We recommend that you use a Windows collation when you create a database. This
type of collation closely follows the collation rules of the operating system.

On the Options tab, you can specify a number of database options. When you create a
new database these options contain default values that are suitable for most databases.
These options can be easily changed after you have created the database.

You can:

• limit access to the database by specifying that it is in single user mode or that only
users who have been assigned certain SQL Server roles can access it.

• specify the following database settings:

Field Comment

Recovery model This setting determines the kind of information that is written to the
transaction log and therefore the kind of recovery model that you
want to use in this database.
The options are:
Bulk-Logged
Full
Simple

Bulk-Logged If you select Bulk-Logged the transaction log file will only contain
limited information about certain large-scale or bulk copy
operations. The Bulk-Logged recovery model provides protection
against media failure combined with the best performance and the
minimal use of log space for certain large-scale or bulk copy
operations.
The backup strategy for Bulk-Logged recovery consists of:
database backups.
differential backups (optional).
19

Chapter 2. The Server Options
Full If you select Full, the details of every transaction are stored in the
transaction log and this information can be used when you apply
transaction log backups. The Full recovery model uses database
backups and transaction log backups to provide complete
protection against media failure. If one or more data files are
damaged, media recovery can restore all the committed
transactions. Incomplete transactions are rolled back.
Full recovery allows you to recover the database to the point of
failure or to a specific point in time. All the operations, including
bulk operations such as SELECT INTO, CREATE INDEX and bulk
loading data, are fully logged to guarantee that the database is
completely recoverable.
The backup strategy for Full recovery consists of:
database backups.
differential backups (optional).
transaction log backups.

Simple If you select Simple, the database can be recovered to the point at
which the last backup was made. However, you cannot restore the
database to the point of failure or to a specific point in time. To do
that, choose either the Full or Bulk-Logged recovery model.
The backup strategy for Simple recovery consists of:
database backups.
differential backups (optional).

ANSI NULL default This setting controls the database default NULL settings for column
definitions and user-defined data types.
When you select this option, all user-defined data types or columns
that have not been explicitly defined as NOT NULL default to allow
NULL entries. Columns that have been defined with constraints
follow the constraint rules regardless of this setting.

Recursive triggers When you select this option, triggers fire recursively. Triggers can
have two different types of recursion:
Direct recursion, which occurs when a trigger fires and performs an
action that causes the same trigger to be fired again.
Indirect recursion, which occurs when a trigger fires and performs
an action that causes a trigger on another table to fire. This second
trigger updates the original table, causing the first trigger to fire
again.

Auto close This setting is used for determining whether or not the database is
closed and shut down properly when all processes in the database
are complete and the last user exits the database, thereby freeing
resources.
The auto close option is useful for databases using the SQL Server
Desktop Edition because it allows database files to be managed as
normal files. They can be moved, copied to make backups, or even
e-mailed. The auto close option should not be used for databases
that are accessed from an application that continuously makes and
breaks connections to SQL Server. Closing and reopening the
database between each connection will impair performance.

Field Comment
20

2.1 The Different Server Options
These options can be changed later.

On the Integration tab, you can set some database settings that affect the way
Dynamics NAV integrates with SQL Server and external tools. These options can be
changed later.

Torn page detection When you select this option, SQL Server can detect incomplete
Input/Output operations that have been caused by power failures
or other system outages.
Torn pages are usually detected during recovery because any page
that was written incorrectly is likely to be read by recovery.
If a torn page is detected, an I/O error is raised and the connection
is terminated. If a torn page is detected during recovery, the
database is marked suspect. The database backup should then be
restored, and any transaction log backups should be applied.

Auto shrink This setting determines whether or not database files are subject to
periodic shrinking. Both data files and transaction log files can be
shrunk automatically by SQL Server.
When you select this option, SQL Server will automatically shrink a
data file or transaction log file when more than 25 percent of the
file is taken up by unused space. The file is shrunk until only 25
percent of the file consists of unused space, or to the size of the file
when it was created, whichever is greater.
Dynamics NAV performs slightly better when this setting is not
selected.

Allow Find As You Type This setting determines whether or not you can use the Find As You
Type option when using the Find function to find an entry in a table
or form. Using the Find As You Type facility can affect performance
because requests are sent to the server for each character that is
typed.

Field Comment
21

Chapter 2. The Server Options
The Integration tab is divided into two sections and contains the following settings:

The database files on SQL Server do not have to be the same size. After you have
created the database files, you can restore the Dynamics NAV database backup file.

Field Comment

Maintain Views This setting determines whether or not SQL Server will create and
maintain a view for each language ID that is added to a table or
field in Dynamics NAV.
If you select this option, external tools can use the SQL views to gain
access to the Caption ML property of the object in the required
languages rather than the name supplied in the table.

Maintain Relationships This setting determines whether or not SQL Server will create and
maintain foreign key constraints for each TableRelation property of
a Dynamics NAV table.
If you select this option, external tools will have access to the table
relationships (foreign key constraints) that exist between the
Dynamics NAV tables. These relationships are disabled and are not
used to enforce data integrity but are intended for modelling
purposes only.
This manual contains more information about table relationships in
the SQL Server Option.

Synchronize This setting is linked to the Maintain Relationships setting and is
only active if you have already decided to create and maintain the
table relationships on SQL Server.
This manual contains more information about table relationships in
the SQL Server Option.

Maintain Defaults This setting determines whether or not SQL Server will create and
maintain default constraints for each field of a Dynamics NAV table.
If you select this option, external tools can use the defaults when
inserting data into or modifying data in Dynamics NAV tables.

Convert Identifiers This setting allows you to select the invalid characters in the names
of all the SQL Server objects (tables, columns, constraints) in the
database and map them to the underscore character. The Remove
characters field contains a list of the characters that are converted
to underscores. You can modify this list.
When the conversion is completed, the database must be closed
and reopened before you can use the new identifiers.
For more information about identifiers and SQL Server, see
Identifiers, Data Types and Data Formats in the SQL Server Option
for Dynamics NAV on page 78.

Save license in database This setting allows you to specify that the license file is uploaded
and stored in the database instead of on the server. This is useful if
you are hosting several databases with separate license files on the
same server.
If you select this option when you are creating or altering a
database, you will be prompted to upload the license file to the
database.
22

2.1 The Different Server Options
Advanced
The Advanced tab contains some settings that let you control the way locking and
security is handled in the database.

The tab contains the following settings:

Backup Features
The two server options offer very different backup and restore facilities.

C/SIDE Database Server
If you are running on C/SIDE Database Server, you can choose between two kinds of
backup: a client based backup and a server based backup.

The Dynamics NAV client based backup is initiated by clicking Tools, Backup.

Field Comment

Lock timeout This setting allows you to specify whether a session will wait to place
a lock on a resource that has already been locked by another
session.

Timeout duration (sec) This setting allows you to specify the maximum length of time that a
session will wait to place a lock on a resource that has already been
locked by another session. The default value is 10 seconds. You can
change this value.
If this option is left unchecked, the session will wait indefinitely.

Always rowlock This setting allows you to specify that Microsoft Dynamics NAV
always places row-level locks instead of page- and table-level locks.

Model This setting allows you to specify whether this database uses the
Normal or the Enhanced security model.
The default setting is Enhanced

Record Set This setting allows you to specify how many records are cached
when Microsoft Dynamics NAV performs a FINDSET operation
with the ForUpdate parameter set to FALSE.
If a FINDSET statement reads more than the number of records
specified here, additional SQL statements will be sent to the server
and this will degrade performance. Increasing this value will also
increase the amount of memory that the client uses to support each
FINDSET statement.
The default setting is 500.
23

Chapter 2. The Server Options
The advantages of using the Dynamics NAV backup function are:

• The system tests the database for errors, so incorrect information is not copied to a
backup.

• The data is compressed, so it takes up as little space as possible.
• The system calculates how much space the backup will use.
• You can keep working in Dynamics NAV while you are making a backup.

HotCopy
C/SIDE Database Server has a server based backup program called HotCopy. HotCopy
is much faster than the client based backup facility. This program is installed with
C/SIDE Database Server and is stored in the same directory as C/SIDE Database Server.

HotCopy can only be run from the server location and can only create backups on hard
disks. You cannot make incremental or differential backups. You can make a backup of
a database while clients are using it. The backups are file copies of the database and are
not compressed.

SQL Server Option
Microsoft SQL Server supports four different types of backup. You should choose the
type of backup you will be using carefully in order to ensure that you get the level of
security you require.

The four types of backup are:

• Database backup – this makes a backup of the entire database.
• Transaction log backup – this makes a backup of the entire transaction log.
• Differential backup – this makes a backup of all committed entries since the last

database backup.
• File and filegroup backup – this makes a backup of individual files or filegroups

within a database.

These can be combined to form many different types of backup and restore
procedures. This allows you to design a backup and restore strategy that fits your
database needs.

For more information about SQL Server backup and restore strategies, consult
Microsoft’s SQL Server documentation.

You can also use the Dynamics NAV client based backup/restore tool when you are
running on the SQL Server Option. However, the SQL Server backup/restore system is
server-based and is therefore considerably faster than the Dynamics NAV
backup/restore tool, which is client-based.

It is possible to restore a SQL Server backup of a Dynamics NAV database directly into
SQL Server without using Dynamics NAV. You can also create a database directly in SQL
Server without first having to create it in Dynamics NAV and then restore a SQL Server
backup of a Dynamics NAV database directly into the database on SQL Server.

SQL Server allows you to make backups when the system is in use. With SQL Server, you
can also automate many of your administrative tasks, including making backups. SQL
Server allows you to establish a database maintenance plan (with the help of a wizard)
that includes database optimization, integrity tests and a backup plan.
24

2.1 The Different Server Options
One of the great advantages that SQL Server has over C/SIDE Database Server is its
ability to record a transaction log. Transaction logs give SQL Server a roll forward
capability that you can use to recover all the committed transactions that were carried
out up to the point of failure. Roll forward is achieved by restoring your last database
backup and applying all subsequent transaction log backups to recreate these
transactions.

In such cases, only uncommitted work (incomplete transactions) will be lost, provided
the active transaction log is also backed up and applied. The active transaction log also
contains details of all uncommitted transactions. When you apply the active transaction
log backup, SQL Server will roll back the uncommitted transactions.

SIFT
SumIndexField Technology (SIFT) has been designed to improve performance when
carrying out certain activities such as calculating customer balances. In traditional
database systems this involves performing a series of database calls and calculations
before arriving at a result.

C/SIDE Database Server
The power and efficiency of SIFT on C/SIDE Database Server makes calculating sums for
numeric columns in tables extremely fast, even in tables that contain thousands of
records. This powerful feature is used throughout the Dynamics NAV application.

Let us say you want the sum of all the values in the Amount field of a table. In a
conventional system, the Database Management System (DBMS) is forced to access
every record and add each value in the Amount field, a very time-consuming
operation in a database with thousands of records. In Dynamics NAV, you create a
FlowField, define the calculation formula of this FlowField to sum the Amount field
and then the DBMS only needs to retrieve the value from the SumIndexField.

SIFT has been built into the index structure used on C/SIDE Database Server and the
more SumIndexFields that are added the larger the index becomes. However, the time
used to maintain the accumulated sum for SumIndexFields is negligible due to a special
index structure used in the DBMS.

SQL Server Option
The way that SIFT is implemented in the SQL Server is much different than the way it is
implemented in C/SIDE Database Server.

In the SQL Server Option, the SIFT system has been reproduced by creating extra so-
called SIFT tables on SQL Server. A SIFT table is a SQL Server table that is created and
maintained automatically by Dynamics NAV and used to store pre-calculated totals
based on the values that are stored in SumIndexFields in standard Dynamics NAV
tables. A SIFT table is created for every standard Dynamics NAV table key that has at
least one SumIndexField associated with it. No matter how many SumIndexFields are
associated with a key, only one SIFT table is created for that key.

This means that every time you update a key or a SumIndexField in a Dynamics NAV
table all of the SIFT tables that are associated with this Dynamics NAV table must also
be updated.

If you have a very dynamic Dynamics NAV table that is constantly having records
inserted, modified and deleted, the SIFT tables that are associated with it will also have
25

Chapter 2. The Server Options
to be updated constantly. The SIFT tables can get very large, both because of the new
records that are entered and because the records that are deleted from the Dynamics
NAV table are not removed from the SIFT tables. This can also badly affect
performance, particularly when the SIFT tables are queried to calculate sums.

This means that the number of SIFT tables that you create can affect performance.

For a more detailed explanation of the way that SIFT works, see SumIndexFields on
page 483.

Performance Monitoring
Another area in which the two server options differ is the way in which you monitor
performance.

The Client Monitor is the most important tool that you can use when you want to
monitor the performance of your application. This tool can be used with both server
options. When you use the Client Monitor with the SQL Server Option it contains some
extra options and fields that give you more insight into how your application is
performing.

The Client Monitor is an important tool for troubleshooting performance and locking
problems. You can also use it to identify the worst server calls and to identify index and
filter problems in the SQL Server Option. The Client Monitor and the Code Coverage
tool now work closely together allowing you to easily identify, for example, the code
that generated a particular server call.

Dynamics NAV also contains a debugger that you can use to refine functions that you
write in C/AL code. The debugger can also be used with both server options.

When you are using the SQL Server Option you can supplement these tools with the
SQL Server Error Log. By enabling trace flags 1204 and 3605, you generate extra
diagnostic error messages in the error log. These give you information about the type
of locks that are involved in a deadlock.

For a detailed description of how to use these tools and of performance
troubleshooting in general, see the manual Performance Troubleshooting Guide that is
available on the Dynamics NAV Tools CD. The Tools CD also contains some extra tools
that you can use for troubleshooting.

Other Differences
Other differences between the two server options are:

• Scalability
Another one of the main differences between the two server options is scalability.
The SQL Server Option can support more simultaneous users than C/SIDE Database
Server.

• Security
The SQL Server Option supports record level security – see "Supporting Record Level
Security" on page 545.

• Multi-Processors
C/SIDE Database Server doesn’t make use of multi-processors while SQL Server does.
26

2.1 The Different Server Options
• Accessing the Database with Third Party Tools
It is much easier to access data in the database with third party tools when you are
running on the SQL Server Option for Dynamics NAV.
27

Chapter 2. The Server Options
28

Chapter 3

The Dynamics NAV Security Model

This chapter introduces you to the Dynamics NAV security
system. It explains the different layers of security that exist in
Dynamics NAV and how they work.

There is also a brief a description of the business and
functional areas that exist in Dynamics NAV. The Dynamics
NAV license system is also explained.

This chapter contains the following sections:

· Security

· Business Areas and Granules

Chapter 3. The Dynamics NAV Security Model
3.1 Security

The Dynamics NAV security system allows you to control which objects (tables and so
on) each individual user can access within each database. You can specify the type of
access that each user has to these tables and records – whether they are able to read,
modify or enter data.

Furthermore, in the SQL Server Option you can specify which particular records that are
stored in these tables each individual user is allowed to access. In other words,
permissions can be allocated at both table level and at record level in the SQL Server
Option for Dynamics NAV.

The Dynamics NAV security system contains information about the permissions that
have been granted to each individual user who can access each particular database.
This information includes the roles that the users have been assigned as well as any
particular permissions that they have been granted as individual users.

The Dynamics NAV security system, even though it is a homogenous integrated system,
can be said to consist of four different levels of security:

• Database Level Security
• Company Level Security
• Object Level Security
• Record Level Security

Graphically these can be represented as the layers of an onion where the central layer is
the records in the database:

Database Level Security
The first layer of security that you encounter when you open Dynamics NAV is
database security. When you have started the program and try to open a database,
your credentials are checked and if you have not been granted permission to open the
database you receive an error message informing you of this fact.

Database Level Security Company Level Security

Object Level Security Record Level Security
30

3.1 Security
To open a database, click File, Database, Open and the Open Database window
appears:

In this window you use the AssistButtons to locate the server that you want to access
and the database that you want to open. If you are running on C/SIDE Database Server,
you can select the server from a list of C/SIDE Database Server. If you are running on
SQL Server, you can select the server from a list of SQL Servers.

In the Authentication field, you select the type of authentication that you want to use
to verify you credentials and give you access to the database.

Dynamics NAV supports two kinds of authentication:

• Windows Authentication
• Database Authentication
The authentication that you must use depends on which kind of login you have been
granted.

Windows Logins
Users are given a Windows login when you use Windows authentication to control
access to Dynamics NAV. Windows logins in Dynamics NAV correspond to the
Windows users and groups of the Windows domain. These are administered and listed
in a separate table and window.

With Windows authentication, when a user tries to connect to a server and open a
database, they do not have to supply a user ID or password. Dynamics NAV
automatically asks Windows to confirm whether or not this user, who has already
logged on to the network, has a valid Windows account and whether this account gives
them the right to access this particular server.

If the user is allowed to access the server, Dynamics NAV checks to see if the user has
been assigned a Windows login within Dynamics NAV. If the user has a Windows login,
they will be granted access to the database.

The user will be granted access to Dynamics NAV and be given the permissions
specified for that Windows user and those specified for any Windows groups of which
they are a member.

If the user does not have a valid Windows account or if their account does not include
permission to log on to the Dynamics NAV database, authentication fails and the user
receives an error.
31

Chapter 3. The Dynamics NAV Security Model
Database Logins
Users are given a database login when they have their own user ID and password in
Dynamics NAV. They must enter their user ID and password to access the database.

In the SQL Server Option they must also have a login on SQL Server. SQL Server carries
out its own authentication of the user’s ID and password. SQL Server does this by
checking whether a SQL Server login with this user’s ID and password has been created.
This login must first have been created by a SQL Server administrator, with a SQL Server
tool. If a SQL Server login has not been set up, authentication fails and the user receives
an error.

The user is granted access to the server after their login has been authenticated.
Database security then validates the user’s permissions by checking the database user
accounts on the server. The permissions that the user has been granted to the various
objects within the database, such as tables, are determined by the information
contained in the user’s database user account. It also contains information about any
additional permissions that the user may have been granted to alter the database itself.

Company Level Security
After you have gained access to the database, you can open the company that you
want to work with.

To open a company, click File, Company, Open and the Open Company window
appears:

This window lists all of the companies that have been created in the current database
and that you have been given access to. A Dynamics NAV database can contain several
companies. These companies can use their own tables and they can also share some
tables with each other.

Select the company that you want to open, click OK and the company opens. If there
are companies in the database that you have not been given permissions to access, you
will not be able to see them in this window.

Object Level Security
You have now opened a company and your ability to work in it is still determined by
the Dynamics NAV security system.

The Dynamics NAV security system consists of roles and permissions that you can
assign to the users who have access to the company. The security roles in Dynamics
NAV determine the access you have and the tasks you can perform on the objects that
exist in the database.
32

3.1 Security
The Dynamics NAV security system divides the database into the following objects:

The various roles that exist in Dynamics NAV determine the tasks that you can perform
on these objects. The following picture illustrates how these permissions are allocated:

This picture shows some of the permissions that have been granted to the FA – Journal,
Post role. As you can see this role has been granted permission to perform various tasks
on a long list of objects. The permissions that a role can have on an object are:

Object Description

Table Data The actual data that is stored in the tables.

Table The tables themselves.

Form The forms that are used to view and enter data.

Report The reports that are used to present the data.

Dataport The dataports that are used to import and export data.

Codeunit The codeunits that are used in the database.

XMLport The XMLports that are used to import and export data in XML format.

MenuSuite The object that contains the menus that are displayed in the Navigation
Pane.

System The system tables in the database that allow the user to make backups,
change license file and so on.

Permission Description

Read You can read this object.

Insert You can insert data into this object.

Modify You can modify data in this object.

Delete You can delete data from this object.

Execute You can run this object.
33

Chapter 3. The Dynamics NAV Security Model
If you have been granted permission to read a form, you can open it and view the data
that it displays. If, however, you do not have write permission you are not allowed to
enter data into this form.

Sometimes, when you open a form it displays information that is drawn from several
tables. However, to access this form you must have permission to view all the data
displayed by the form. You might not have permission to read directly from all the
tables that the form uses. In this case you must have what is known as indirect
permission to read from the tables in question. Having indirect permission to a table
means that you cannot open the table and read from it but can only view the data it
contains indirectly through another object, such as a form or report, that you have
direct permission to access.

Dynamics NAV comes with a number of standard predefined security roles. You can
use these roles as they are or you can change them to suit your particular needs. You
can also create your own security roles and give them the permissions that you want.

Record Level Security
Record level security is a system that allows you to limit the access that a user has to
the data in a table by specifying that the user only has permission to access certain
records in the table. Record level security is only available in the SQL Server Option for
Dynamics NAV.

Record level security is implemented by applying security filters to the tables and the
table data that a user has access to. You can specify, for example, that a user can only
read the records that contain information about a particular customer and cannot
access the records that contain information about any of the other customers.

For a brief description of how to apply security filters, see the manual Installation &
System Management: SQL Server Option for the C/SIDE Client.

For a more detailed description of how to implement record level security, see
"Supporting Record Level Security" on page 545.

Things to Remember about the Dynamics NAV Security System
There are some important things that you must remember about the Dynamics NAV
security system:

• The Dynamics NAV security system is initiated when you create the first login. Until
you create the first login, anyone can carry out all the transactions they wish in a
Dynamics NAV database. Furthermore, the first login you create must be that of a
superuser. The superuser then owns and administers all access to this database from
within Dynamics NAV.

• You can only grant permissions to other users that you already possess yourself. We
therefore recommend that the user who administers security in Dynamics NAV
should be a superuser.

• One of the first things that the superuser should do is create logins for the other
people who will have access to the database and grant the appropriate permissions
to these users.

• In Dynamics NAV a table can contain a FlowField that generates sums based on
values that are stored in another table. In this case, the user must have permission to
read both tables or they will not be allowed to read the first table.
34

3.1 Security
For a more detailed description of how to manage security in Dynamics NAV including
detailed instructions on how to create logins and roles, as well as how to grant and
modify permissions, see the Installation & System Management manual for the server
that you are using.
35

Chapter 3. The Dynamics NAV Security Model
3.2 Business Areas and Granules

Now that you are familiar with the different levels of security that exist in Dynamics
NAV, you should learn something about the business areas that Dynamics NAV
contains and how your license file controls the access that you have to these areas and
the functionality that they contain.

The standard Dynamics NAV application is divided into several business areas. Each
business area consists of a number of functional areas. In turn, these functional areas
contain a large amount of functionality and different customers will probably only
need some of the functionality provided. To facilitate this, a Dynamics NAV license file
consists of a number of granules. Each granule represents a small area of functionality.

This system makes it possible for each customer to purchase a license that only gives
them and their employees access to exactly the functionality that they need.

Dynamics NAV contains the following business areas and functional areas:

Business Areas Functional Areas

Finance Management General Ledger
Cash Management
Receivables
Payables
Fixed Assets
Inventory

Sales & Marketing Sales
Order Processing
Marketing
Inventory & Pricing
Analysis & Reporting
History

Purchase Planning
Order Processing
Inventory & Costing
Analysis & Reporting
History

Warehouse Orders & Contacts
Planning & Education
Goods Handling
Inventory
History

Manufacturing Product Design
Capacities
Planning
Execution
Costing
History

Jobs Jobs
Reports
History
Periodic Activities
36

3.2 Business Areas and Granules
Each of these functional areas represents an important field of activity. However, even
though you have a General Ledger, you don’t necessarily need all the functionality that
is available in this area.

The following table lists the granules that are available in the General Ledger:

Resource Planning Resources
Reports
History
Periodic Activities

Service Contact Management
Planning & Dispatching
Order Processing
History

Human Resources Employees
Absence Registration
Reports

IT Administrator IT Administration
Application Setup

Granule – Name &
Number

Description

Basic General Ledger
(3,010)

You use this granule to set up a company and post to the general ledger.
The granule provides you with the basic facilities necessary for setting up
a company and posting to the general ledger: chart of accounts, general
journals, VAT facilities, recurring journals and source codes. It also
includes facilities for internal and external reporting.
The granule allows you to post and report in the company's base
currency. If you also purchase the Multiple Currencies granule, you can
post and report in an additional currency as well.
The granule allows two languages from the beginning – the English US
language and the native language for the particular country/region.
The granule allows 1 instance of NAV Application Server.
This granule must always be included as part of the initial purchase of a
solution because it includes 1 session and the first company.
Requirements: The granule Dynamics NAV Version 3.XX

Budgets (3,030) This granule allows you to work with budgets in G/L accounts.
Once you have created a budget, you can print a balance compared to
the budget showing variances by percentages. You can work with several
budgets. Budgets are normally entered per period for the relevant G/L
accounts. You can create, copy and work with any number of budgets at
the same time. You can work with, for example, a 100% budget, a 110%
budget, and so on.
Requirements: Basic General Ledger

Business Areas Functional Areas
37

Chapter 3. The Dynamics NAV Security Model
Account Schedules
(3,040)

You use this granule for financial reporting. You can arrange reports
based on the figures in the chart of accounts and budgets, but with a
different arrangement of financial figures, texts or details than in the
chart of accounts. The Account Schedules granule is like a filter for the
chart of accounts that enables you to choose the accounts that you want
to include (or not include). You can also use it to change the order of the
accounts or combine the figures in various ways, and you can set up
which columns to print. In addition, it is possible to make simple
calculations.
Requirements: Basic General Ledger

Consolidation (3,050) This granule enables you to consolidate companies in Dynamics NAV.
The companies can come from one or from several different Dynamics
NAV databases or from another type of file. There are facilities for
imports and exports of financial information in the Consolidation
granule. If the data used is retrieved from several Dynamics NAV
solutions, the granule is only used in the parent company itself.
Requirements: Basic General Ledger

Allocations (3,020) This granule allows you to allocate general ledger entries to
combinations of accounts, departments and projects using allocation
keys.
The allocation keys can be based on amount, percentage or quantity.
Allocations can be used for many purposes, for example, when allocating
overhead (such as rent) to company profit centers.
Requirements: Basic General Ledger

Responsibility Centers
(3,060)

With this granule you can setup profit centers and/or cost centers. A
company can sell items with specific prices and related to a responsibility
center. The functionality provides the ability to tie a user to a
responsibility center so that only sales and purchase documents related
to the particular user are displayed. In addition, users get assistance with
entering extra data, such as dimensions and location codes.
Requirements: Multiple Locations

Basic XBRL (3,070) With this granule you can export documents from Dynamics NAV in XBRL
format and import XBRL taxonomies into Dynamics NAV from the
Internet, e-mails or from other systems. XBRL is an XML-based
specification that uses accepted financial reporting standards based upon
standardized, underlying data tags. It is possible to map your general
ledger to XBRL taxonomies, meaning that the same XBRL instance
document can be used for various purposes, independent of the format
required by the receiver of the document.
Requirements: Basic General Ledger

Granule – Name &
Number

Description
38

3.2 Business Areas and Granules
The information contained in this table does not necessarily correspond with the
granule definition that is currently enforced by Microsoft Business Solutions.

Each of the other functional areas can be similarly broken down into areas of more
specific functionality.

This means that your license file and the way that it is configured have an important
influence on the functionality that is available to you in Dynamics NAV. Your license file
and the granules that it contains determine which functional areas you have access to
and which functions you can perform in these areas.

The advantage of this system is that the customer doesn’t pay for a general license to
run the product but instead only pays for the granules that they need to run their
business.

Change Log (3,080) This granule enables you to log user changes made to Dynamics NAV
master data.
It is possible to log all direct modifications a user makes to the data in the
database, except changes to 'working documents' such as journals and
sales and purchase orders. The change log functionality makes it possible
to get a chronological list of all changes to any field in any table (except
the ones mentioned earlier) and to see who (what user ID) made the
changes.
Requirements: Basis General Ledger

Granule – Name &
Number

Description
39

Chapter 3. The Dynamics NAV Security Model
40

Part 2
Fundamentals

Chapter 4

C/SIDE Fundamentals

A C/SIDE® application is composed from seven types of
application objects. Each type of application object is
created using a specific tool called a designer. The
application objects you create using these designers are all
based on some general concepts. A fundamental knowledge
of these concepts speeds up the C/SIDE application
development process.

This chapter introduces you to the C/SIDE user interface and
presents the general concepts that underlie C/SIDE
application objects.

· The C/SIDE User Interface

· What Is a C/SIDE Application?

· The Physical and the Logical Database

Chapter 4. C/SIDE Fundamentals
4.1 The C/SIDE User Interface

In this section, you are introduced to the C/SIDE user interface and to some of the basic
concepts that are relevant to application design such as the different object types.

Designing Application Objects
All C/SIDE applications are based on seven different types of application object:

Table You use tables to store data. For example, a business application normally
contains a customer table that stores information about each customer, such as, their
name, address, phone number and the name of your contact person. Understanding
tables is the key to using all the other objects.

Form You use forms to access the information that is stored in the tables. You use
forms when you enter new information and when you view information that already
exists in the database.

Report You use reports to present information. You use filters and sorting to select
the data that you want to present in a report.

Dataport You use dataports to import data from and export data to external text
files.

XMLport You use XMLports to import and export data in XML format.

Codeunit A codeunit contains user-defined functions written in C/AL code. C/AL is
the application language you use to write functions in C/SIDE. The functions that a
codeunit contains can be used from the other objects in your application. This helps to
minimize application size because the same code can be reused again and again.

MenuSuite A MenuSuite object contains the set of menus that are displayed in the
Navigation Pane.

Note

Every application object is identified by an ID number. There are, however, restrictions
about which numbers you should use when you create your own application objects.
Please contact your Microsoft Certified Business Solutions Partner for more
information.

The Object Designer
The Object Designer is the main tool for developing C/SIDE applications, and the tool
you use to:

• design new tables, forms, reports, dataports, XMLports and codeunits. (You design
MenuSuite objects in the Navigation Pane Designer.)

• view existing application objects. However, you view the content of a MenuSuite
object in the Navigation Pane Designer (or in the Navigation Pane at runtime).
44

4.1 The C/SIDE User Interface
• modify existing application objects (with the exception of MenuSuite objects, which
are modified in the Navigation Pane Designer).

• run an application object (with the exception of XMLports and MenuSuite objects).

The following table lists the tools that are available in the Object Designer.

With the exception of MenuSuite objects, you can work on any number of application
objects at the same time, each in its own designer. This means that you can run
multiple instances of these designers. For example, if you work on three new forms at
the same time, then each form is displayed in its own form designer. You can, however,
only run one instance of the Object Designer.

The Object Designer and MenuSuite Objects
When you click the MenuSuite button in the Object Designer, select a MenuSuite
object and then click Design, the content of the object is displayed in the Navigation
Pane Designer. This is where you modify the content.

When you click the MenuSuite button and then click New, a dialog opens asking you to
specify which menu suite level (for example, Developer or Administrator) that you want
to create. If you have created a MenuSuite object for each level that you have
permissions for, the New button will be disabled. This is because only one MenuSuite
object is allowed per level. Once you have made a selection, the Navigation Pane
Designer opens and you have the appropriate design rights.

This is where you
access the designers
for different objects.
You simply choose
the type of object
you want to work
on here.

Create a new object
Change the design of
the current object

Run the current
object

Use the... When working on ...

Table Designer tables

Form Designer forms

Report Designer reports

Dataport Designer dataports

XMLport Designer XMLports

C/AL™ editor codeunits

Navigation Pane Designer MenuSuite objects
45

Chapter 4. C/SIDE Fundamentals
Is Dynamics NAV
object oriented?

C/SIDE is not object oriented but object-based. This is an important distinction. In an
object oriented language or environment, a developer can create new types of objects
based on the ones already in the system. In Dynamics NAV, you can only create objects
that are either tables, forms, reports, dataports, XMLports, codeunits or menu suite
objects.

Because there are a limited number of application objects, C/SIDE works faster and
more efficiently. Your design work is also easier, because you know exactly what you
have to work with. But the greatest benefit is stability. It is actually difficult to create a
severe bug in C/SIDE.
46

4.2 What Is a C/SIDE Application?
4.2 What Is a C/SIDE Application?

You use C/SIDE to create accounting and business management applications. A C/SIDE
application consists of the same objects as a C/SIDE database. But, whereas a database
is simply a collection of application objects, an application is a set of application objects
that are tied together to form a coherent whole.

General C/SIDE Concepts
With the exception of the MenuSuite object, the different types of C/SIDE application
objects are based on some general concepts. Some of these concepts are restricted to
one type of application object, but others apply to several types. When you understand
these fundamental concepts, you have a good foundation for creating your own
applications.

The following table summarizes and explains what each type of application object is
used for.

Application Object
Type

What is it used for? Which concepts is it
based on?

Table A table is used for storing the actual data. Typically a
business application will have a Customer table that
stores information such as name, address, phone
number and contact person for each of your
customers.

Properties, Fields,
Keys, C/AL

Form A form is used to access the information in your
tables. Forms are used both when you enter new
information and when you view existing
information.

Properties, C/AL,
Controls

Report A report is used to present data that contains
summary information. For example, you will use a
report to print a list of customers.

Properties, C/AL,
Controls, DataItems,
Sections, Templates,
RequestForm

Dataport A dataport is used to import and export information
to and from other programs (a comma-separated
file from a spreadsheet, for example).

Properties, C/AL,
DataItems,
RequestForm

XMLport An XMLport is used to import and export data in
XML format.

Properties, C/AL

Codeunit A codeunit contains user-defined functions written
in C/AL code. These functions can be used from the
other objects in your application. This minimizes the
size of the application because the same code can
be reused over and over again.

C/AL

MenuSuite A MenuSuite object contains the menus that are
displayed in the Navigation Pane.
47

Chapter 4. C/SIDE Fundamentals
Description of the
concepts

Here is a description of the basic C/SIDE concepts:

Properties Properties control the appearance and behavior of the application objects
and all their sub-objects. Properties are used to control the appearance of data, specify
default values, specify colors and define relationships.

C/AL C/AL is the language you use to write functions in C/SIDE. In the previous table,
"C/AL" refers to functions written in this language.

Triggers A trigger is a mechanism that is built into an application object. When
certain actions are performed on the application object, the trigger initiates an action.
You can add your own C/AL code to the trigger to modify the default behavior of the
application object or extend its functionality.

Keys Keys define the order in which data is stored in your tables. You can speed up
searches in tables by defining several keys which sort information in different ways.

Fields A field is the smallest building block in your database. A field typically stores
information such as a name or a number.

Controls Controls are objects on a form or report that display data, perform actions
or enhance the appearance of the form. Typical examples of controls are command
buttons and text labels.

Request Form A request form is a form that is used in a report. Before a report is run,
a request form appears to let the user specify filters and options for the report.

Template A template defines the overall layout of a report.

Data Items A data item is a building block for defining a model of your data when
you create a report. You use a hierarchy of data items to define which data the report
will contain. A data item represents a table, and when you run a report, the system
cycles through the records in the associated table. A data item can have one or more
sections.

Sections A section is a substructure of a data item, where you place controls to
display information. You will typically use sections that define the body, header, and
footer in your report.
48

4.3 The Physical and the Logical Database
4.3 The Physical and the Logical Database

The previous section described the general concepts underlying the different types of
application objects in C/SIDE. This section presents another view of C/SIDE applications.
In this section we are only concerned with how the information in your application is
structured.

When you use a database, you are not usually concerned with where each piece of data
is stored, or what size it is. You just want to be sure that when you refer to a name, for
example, the correct value is returned. This is why the C/SIDE database system provides
a conceptual representation of data that does not include too many details of how the
data is stored. An abstract data model is used for this conceptual representation. This
data model uses logical concepts (such as objects, their properties and their
relationships), which are much easier to understand.

This leads us to distinguish between the logical and the physical database. When we
speak about the logical database we are concerned only with the structure of the data
and the relationships between different pieces of information. That is, we do not deal
with how these structures and relations are implemented. When we speak about the
physical database, we only deal with how the structures in the logical database and the
search paths between them are implemented.

In this book, the term database normally means the logical database, unless indicated
otherwise.

What the user sees as a coherent set of information in the C/SIDE database system can
be stored in several physical disk files, but this is transparent to the user. The following
figure illustrates how one logical database can be physically stored on three hard disks
but still comprise a single (logical) database.

The Logical Structures in Your Database
Access to the data is made possible by a well-defined logical organization composed
of:

Fields Fields are the smallest logical structure in a C/SIDE database. A field holds a
single piece of information, such as a name, "Joe," or an amount, "2,352.00." Any
particular field can hold one specific type of information. (The C/SIDE database system
distinguishes between 17 different types of information.) Fields are assembled into a
structure called a record. On its own, a field is not very useful, as it can hold only a
limited amount of information. Assembling these small bits of information into records
produces a much more flexible "information-holder", which also keeps together fields
that belong together.

Records A record is a logical structure assembled from an arbitrary number of fields.
A record stores a single entry in the database. The fields in a record store information
about important properties of the entry. Records are organized in tables.

Tables A table can be thought of as an N times M matrix. Each of the N rows
describes a record and each of the M columns describes a field in the record. Tables are
organized in companies.

LogicalOne logical
database Database = Physical

Disk File
Physical
Disk File

Physical
Disk File

+ + ... +
Several physical
disk files
49

Chapter 4. C/SIDE Fundamentals
Companies A company is the largest logical structure in a C/SIDE database. A
company can be thought of as a sub-database; its primary use is to separate and group
large portions of data together. A company can contain private tables as well as tables
that are shared with other companies.

Database

Record

Companies are the
largest logical
structures in a
C/SIDE database

Fields are the
smallest logical
structures in a
C/SIDE database

Field

Company
Table
50

Chapter 5

Designing a C/SIDE Application

Carefully planning the details of your database applications
will help you end up with a sound design. A properly
designed application is easier to build and maintain.

This chapter provides guidelines for creating quality
applications in C/SIDE using the well-known methodology
of analysis, design, and implementation.

· Introduction to C/SIDE Application Design

Chapter 5. Designing a C/SIDE Application
5.1 Introduction to C/SIDE Application Design

Carefully planning the details of your database application will help ensure that your
database has the best possible design. An application that has been properly designed
is easier to build and maintain. This section contains some guidelines for creating
quality applications in C/SIDE using the well-known methodology of analysis, design,
and implementation.

Designing a C/SIDE database application usually includes the following three steps:

Understanding the Problem Make sure you understand the business problem you
are trying to solve. Be sure you know who will be using the application and what they
will be trying to accomplish.

Designing the Tables Begin by designing a data model to determine how the data is
stored and how it can be most meaningfully utilized. The data model determines:

• which tables the database must contain.
• what kind of data you want to store in the fields of each table.
• how the data in the tables are related to each other.
• constraints that are necessary to ensure data integrity.

Designing the Application When you have designed the database tables, you are
ready to begin designing the application itself. Designing the application involves:

• designing forms (to enter and retrieve data) and reports (to view and present data).
• creating C/AL code to connect the application objects.

These steps depend on each other. When you move from one step to another you
often have to rethink some of the decisions you made in the previous step.

Understanding the Problem
To decide which information you should store in the database, you have to understand
the purpose of the database and how it will be used. The best way to do this is to talk
to the people who will be using it. Involving the end user in this process, as early as
possible, helps eliminate problems that can stem from misunderstandings about the
purpose of the database. Interviewing the end users will help you understand the tasks
they expect the system to perform. Based on this understanding, you can determine
the kind of data and thereby the kind of tables, forms and reports that are necessary
for completing these tasks. This will often be the most difficult part of the design
process as well as the most important. The usefulness of the entire application depends
on whether the tables, forms and reports have been designed correctly.

Your discussions with the end users will give you a lot of insight into the tasks they
need to perform. You will then know what information the forms and reports should
provide. This does not, however, necessarily tell you how the tables should be
designed.

Designing the Tables
The next important task is to divide the information you want to store in the database
into basic categories such as customers, products, employees, and so on.
52

5.1 Introduction to C/SIDE Application Design
Before you create the tables you should define a data model. The data model must
describe:

• the tables in the database.
• the fields in the tables.
• the relations between the fields in your tables.
• constraints for fields and relations.

The Entity-Relationship model (ER model) is a suitable tool for defining a data model.
An ER model can map real-world situations to a relational database system such as
C/SIDE.

An ER model divides all the elements of a real world situation into two categories:
entities and relationships. An entity is a "thing" in the real world with an independent
existence. An entity may be an object with a physical existence, such as a particular car
or person, or it may be an object with a conceptual existence, such as a company or a
job. Relationships describe how the entities are related.

To use the ER model, you must complete the following steps:

1 Identify the types of entities associated with your problem. Create tables to
represent each of these types of entities.

2 Identify the properties of each type of entity and create fields in the tables to
represent each of these properties.

3 Identify the relationships between the entities and add these relationships to the
tables.

The following information is not a description of all the facets and implications of the
ER model. However, it does provide an overview of the model and illustrates the
benefits of applying a formalized design method.

How Are ER Model Concepts Related to C/SIDE Concepts?
A real world problem usually contains groups of entity types that are similar. For
example, consider a company that has hundreds of customers. All of the customers are
entities. These customer entities share the same properties, but each entity will have its
own values for the properties. Such similar entities define an entity type, that is, a set of
entities with the same properties. When you implement the abstract ER model in
C/SIDE, you transform all the abstract elements in your model into concrete
representations. Each entity type corresponds to a table in C/SIDE and each of the
entity’s properties corresponds to a field in the table.

The following table summarizes how basic ER model concepts relate to C/SIDE
concepts.

ER Model Concept Corresponding Concept in C/SIDE

An entity type A table

An entity A record

A property A field
53

Chapter 5. Designing a C/SIDE Application
Determining Field Types
In the ER model, after you have identified the entity types and their properties, you
determine the types of values these properties can have. In C/SIDE this corresponds to
determining the data types of the fields in your tables.

Example

Your analysis using the ER model has revealed that you have an entity type describing your
company's customers. This leads you to define a Customer table:

Your analysis shows that you need fields such as Company Name, Contact Person, Phone and
Payment Method. So when you create the Customer table, you select the following data types:

For more information about the C/SIDE data types, see "Choosing Data Types" on page 63.

Role of Keys in C/SIDE
The ER model places a very important constraint on the entities of a particular entity
type (records in a table). This is the key or uniqueness constraint on the properties
(fields). An entity type usually has at least one property which contains unique values
for each individual entity. This property is used to uniquely identify each individual
record. The following table shows how the ER model concepts are related to C/SIDE
concepts.

The records in a table must be arranged according to some criterion (that is, a key) so
that C/SIDE can work efficiently with the data in tables. For example, an Employee table
can be ordered according to the employees' social security numbers because this
number uniquely identifies each employee.

Field Name Description Data Type

Company Name Stores the name of the customer (for example,
"Microsoft Business Solutions ApS").

Text

Contact Person The contact person in the company (for example,
"JLJ").

Text

Phone The customer’s phone number (for example,
"45662111").

Text

Payment Method The payment method for the customer (for example,
"pay in cash").

text

Company Name Contact Person Phone ...

......

Payment MethodCustomer Table

ER-Model Concept Corresponding Concept in C/SIDE

Constraints on the entities of an entity type Constraints on the records in a table

The uniqueness constraint on entity properties A key based on fields in a table
54

5.1 Introduction to C/SIDE Application Design
In order for a field to be a key for a table, the uniqueness constraint must hold for every
record in the table. This constraint prevents any two records from having the same
value in the key field. It is not a constraint on a specific record, but a constraint on all
the records in the table.

Sometimes, a key consists of several fields. In this case, the combination of the values in
all the fields in the key must be unique for each record. Sometimes you can define
several keys for a table. For more information about creating keys, see the section
"How to Define a Primary Key" on page 71.

Determining the Relationships
At this point in the process, you have carefully designed a number of tables to store
individual types of information. In your final application you want to retrieve the
information in a meaningful way. Very often an answer from your database will consist
of information stored in several tables. To enable you to get these answers, C/SIDE uses
relationships to link the tables that contain the related information.

Database terminology normally distinguishes between three types of relationships:

One-to-Many Relationships A record in Table 1 can have more than one matching
record in Table 2, while a record in Table 2 can have no more than one matching
record in Table 1. This is the most common type of relationship in a relational database.

Many-to-Many Relationships A record in Table 1 can have more than one
matching record in Table 2, and a record in Table 2 can have more than one matching
record in Table 1. This represents a problem in database design and may signal an
inefficient design. Normally, you break down a many-to-many relationship into two
one-to-many relationships.

One-to-One Relationships A record in Table 1 can have no more than one matching
record in Table 2, and a record in Table 2 can have no more than one matching record
in Table 1. This kind of relationship is inefficient and can often be avoided by simply
combining the two tables.

Assuring the Quality of the Design
When you are defining the tables and setting up relationships, you often have to select
from among several possible solutions. To make sure that you select the most
appropriate solution, you need a way to measure the quality of your design. You use
the normalization process to measure the quality of your design. The normalization
process takes your design through a series of tests to verify whether it belongs to a
certain normal form. There are six normal forms. Most texts on relational database
design explain how to obtain these normal forms. For more information, see the books
listed at the end of this chapter.

Designing the Application
After you have designed the tables, you are ready to begin work on the application
itself. The analysis phase has already given you an overview of the answers that the
application is expected to provide. The table design phase has given you a clear
understanding of where and how the information will be stored. Based on this
understanding, you are ready to begin assembling the entire application.
55

Chapter 5. Designing a C/SIDE Application
This part of the application design involves:

Creating Forms Forms are used to present or collect information. You have access to
a number of design elements, such as text, data, pictures, lines, and color.

Creating Reports Reports are used to present data as printed documents. When you
want to present summary information, reports are more flexible than forms.

Creating C/AL Codeunits Codeunits are containers for storing C/AL code. When you
put the code into a codeunit, you can reuse the same algorithms many places in your
application. This reduces the size of the application and makes it easier to maintain.

Testing and Refining the Application Before you release your application, you have
to analyze your design for errors. This is normally an iterative process. When you have
completed all this you will have a useful application. If you took the time to plan all the
steps of the application design carefully, you will also have an application that is fully
documented. This will be a great help when you need to make adjustments and
additions to the application in the future.

Recommended Books on Database Design
Some of the most well-known books about relational database design are:

C. J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Co.

Elmasri, R. A. and Navate, S. B. Fundamentals of Database Systems.
Benjamin/Cummings.

Dutka, A. F. and Hanson, H. H. Fundamentals of Data Normalization. Addison-Wesley
Publishing Co.

Michael J Hernandez, Database Design for Mere Mortals. Addison-Wesley Publishing
Co.
56

Part 3
Tables

Chapter 6

Table Fundamentals

Tables are the fundamental objects in any database. This is
true no matter what kind of data you need to store. When
you create a new database, you begin by building the
tables. Later on, you create forms and reports in order to
access and view the data in the tables.

This chapter explains how to design appropriate tables to
store your data.

· What Is a Table?

· Viewing and Modifying Properties

· Defining Keys

· Identifiers, Data Types and Data Formats in the SQL
Server Option for Dynamics NAV

· Saving tables and Viewing Sorted Data

· Special Table Fields

· Dividing the Database into Companies

Chapter 6. Table Fundamentals
6.1 What Is a Table?

The records in the C/SIDE database are stored in tables. A C/SIDE table can be
visualized as a two-dimensional matrix, consisting of columns and rows. The following
figure shows a table where each row is a record and each column is a field.

A table consists of two parts: the table data and a table description. The table data is
the part users often think of as comprising the database, because it contains the actual
records with their data fields. The layout and properties of those fields, however, are
specified by the table description. The table description is not directly visible to the
user. The next figure illustrates how the table data and the table description together
form a table.

When you design a table, you assign a number of characteristics to it, such as a name,
an ID number and the fields it contains. You also assign a number of characteristics
(such as name, ID number, data type and initial value) to each field. When you design a
new table, you also specify which keys you want the system to maintain. All these
characteristics are stored in the table description when you save your table design.

The information in the table description is used by the Database Management System
(DBMS) and occasionally by database users who need information about the table
structure. The table description makes the DBMS flexible, as it lets the system access
tables with different structures. The DBMS can extract the definitions of the table
structure from the table description and thereby correctly access any table.

Columns: FieldsRows: Records

Table This is the Table
Description

Table Data

- Triggers
- Keys

- Properties
60

6.1 What Is a Table?
The following figure illustrates that a table description contains properties, triggers,
fields and keys and shows how these are related:

The table description contains some properties that are related to the table, others that
are related to the fields in the table, and other properties related to keys. You can also
see that triggers are defined both for the table and for the fields in the table.

Creating a Table
When you first create a table, it does not contain any data. Nevertheless, when you
create the table you must also decide what types of information you want to store in it.
The information is held in fields, and each field can be declared as one of the data
types that are available in Dynamics NAV.

To create a table:

1 Click Tools, Object Designer (SHIFT+F12) and C/SIDE opens the Object Designer:

Table Description

Table Properties

Triggers

Fields

Keys

Properties
Triggers

Properties

Select the type of
object you want
to work on here

Create a new
object
61

Chapter 6. Table Fundamentals
2 Click Table, New and the Table Designer appears:

In the Table Designer, for each field you add to the table, you enter the field number,
name, data type and optionally, a length and a description.

Adding Fields to Your Table
Designing a field means assigning a number of characteristics to it. These
characteristics depend on what you intend to use the field for.

After you have added fields to a table in the Table Designer, you must save the table
before you can add any records. Once you have saved a table, it appears in the list of
tables in the Object Designer.

All the tables and fields you create have two forms of identification:

• A unique identification number (integer). When you access your database using
either C/SIDE or C/FRONT, this number uniquely identifies all the tables and fields.

• A name (an alphanumeric string) that serves as a label (such as CUSTOMER or CITY).
This name appears on the screen when you run the table and should be meaningful
and easily understood. This name is secondary information and can be changed at
any time.
62

6.1 What Is a Table?
Choosing Data Types
When you have selected an identification number and name for a field, you have to
select an appropriate data type. You can use many different types of fields in the
C/SIDE database system. Each type is designed to hold a specific kind of information,
such as text, numbers, dates and so on.

Fields in a record can be of the following types:

Data Type Description Size

Option Denotes an integer in the range -2,147,483,647 and
2,147,483,647. An option field is defined with an option string,
which is a comma-separated list of strings representing each
valid value of the field. This string is used when a field of type
Option is formatted and its value is converted into a string. An
example:
The Option field "Color" is defined with the option string
"Red,Green,Blue". Valid values of the field are then 0, 1 and 2,
with 0 representing "Red" and so on. When the "Color" field is
formatted, 0 is converted into the string "Red", 1 into "Green",
and 2 into "Blue".
The size of the corresponding SQL data type, INTEGER, is 4
bytes.(A)(B)

4 bytes

Integer Denotes an integer between -2,147,483,647 and 2,147,483,647.
The size of the corresponding SQL data type, INTEGER, is 4
bytes.(A)(B)

 4 bytes

Decimal A decimal number between -1063 and 1063. The exponent
ranges from -63 to +63. Decimal numbers are held in memory
with 18 significant digits. The representation of a decimal
number is a Binary Coded Decimal (BCD).
The size of the corresponding SQL data type, DECIMAL(38,20),
is 17 bytes.(A)(B)

12 bytes

Text Any alphanumeric string. The field must be defined to be
between 1 and 250 characters. The space used by a text field
equals the maximum length of the text plus one byte. This extra
byte is a used to hold the length of the string. An empty text
string has the length zero.
The size of the corresponding SQL data type, VARCHAR, is 1 byte
per character in the field’s value.(A)(B)

Maximum string
length + 1 byte
(see note).
63

Chapter 6. Table Fundamentals
Code An alphanumeric string, which is right-justified if the contents
are numbers only. If letters or blanks occur among the numbers,
the contents are left-justified. All letters are converted to
uppercase upon entry.
The field must be defined to be between 1 and 250 characters.
The space used by a code field equals the maximum length of
the text plus two bytes. The first of the extra bytes holds
information about the length of the string, and the second byte
stores alignment information.
In the SQL Server Option for Dynamics NAV, code fields work in
a different way. You can use the SQL Data Type property to
indicate whether code fields can contain integers or text strings.
Refer to the online C/SIDE Reference Guide for information
about the SQL Data Type property. Further, Numbering in
Dynamics NAV on page 515 contains information about the
sorting of numeric values in code fields.
The size of the corresponding SQL data type, VARCHAR, is 1 byte
per character in the field’s value.(A)(B)

Maximum string
length + 2 bytes
(see note).

Date A date value in the range from January 1, 0 to December 31,
9999. An undefined date is expressed as 0. All dates have a
corresponding closing date. The system regards the closing date
for a given date as a period that follows the given date but
comes before the next normal date; that is, a closing date is
sorted immediately after the corresponding normal date but
before the next normal date.
The size of the corresponding SQL data type, DATETIME, is 8
bytes.(A)(B)

4 bytes

Time Any time in the range 00:00:00 to 23:59:59.999. A time field
contains 1 plus the number of milliseconds since 00:00:00
o'clock, or 0 (zero), an undefined time. A time value is calculated
in the following way:
Time = 1 + (number of milliseconds since 00:00:00).
The size of the corresponding SQL data type, DATETIME, is 8
bytes.(A)(B)

A time field is
stored as an
integer (four
bytes).

Boolean Assumes the values TRUE or FALSE. When formatted, a boolean
field is shown as "Yes" or "No".
The size of the corresponding SQL data type, TINYINT, is 1
byte.(A)(B)

 4 bytes

Binary Contains binary data. The binary data is stored in the record.
The size of the corresponding SQL data type, VARBINARY, is the
number of bytes in the field’s value.(A)(B)

Maximum length
is 250 bytes (see
note).

BLOB Binary Large Object. Used to store bitmaps and memos.
Notice that the BLOB isn’t stored in the record, but in the BLOB
area of the table.
The size of the corresponding SQL data type, IMAGE, is the
number of bytes in the field’s value.(A)(B)

8 bytes in the
record + size of
BLOB data. (max.
2 GB)

Data Type Description Size
64

6.1 What Is a Table?
(A) The calculation of the size of a specific SQL Server record requires more than simply summing
the sizes of the field values. Refer to Microsoft’s SQL Server documentation for further information.

(B) This is the SQL Server data type that Dynamics NAV uses when it creates the Dynamics NAV data
type. for further information, see page 78.

Note

In C/SIDE Database Server, data is stored with a four byte alignment because of
performance considerations. The sizes of text, code and binary fields (that can have
variable lengths) are rounded up to the nearest value that is a multiple of four. This
means that, for example, a text string of 10 characters will occupy 12 bytes.

Besides the ordinary fields discussed in this section, the C/SIDE database system also
includes two special types of fields:

• FlowField®

• FlowFilter®

How these special fields provide powerful data retrieval mechanisms is described on
page 87.

DateFormula Used to verify the date entered by the user. The syntax is for
example:
30D (=30 days)
CM+1M (=current month plus one month)
D15 (=on the 15th of each month)

4 bytes

TableFilter This data type is used to apply a filter to another table.
Currently, this can only be used to apply security filters from the
Permission table.

BigInteger A 64 bit integer. 8 bytes

Duration Represents the difference between two points in time, in
milliseconds. This value can be negative.

8 bytes

DateTime Represents a point in time as a combined date and time. The
datetime is stored in the database as Coordinated Universal
Time (UTC) and is always displayed as local time in Dynamics
NAV.
Local time is determined by the time zone regional settings
used by your computer.
You must always enter datetimes as local time. When you enter
a datetime as local time, it is converted to UTC using the current
settings for the time zone and daylight saving time.
The DateTime datatype does not support closing dates.

Stored as two 4
byte integers

GUID Globally unique identifier 16 bytes

RecordID Unique record identifier

Data Type Description Size
65

Chapter 6. Table Fundamentals
6.2 Viewing and Modifying Properties

This section describes how you can use properties in your table design. As you learned
earlier, there are three kinds of properties:

• Table Properties
• Field Properties
• Key Properties

Viewing and Modifying Table Properties
A table in C/SIDE has a number of properties that determine the behavior of the table.
When you create a table, C/SIDE automatically defines a number of default values for
these properties. Depending on what the table is going to be used for and how it is
related to other application objects, you may want to change these default values.

C/SIDE contains the following table properties:

Property Name Use this property to...

ID define the ID of the table.

Name define a name (used as caption) for the table.

Caption display the caption in the currently selected language. The value is taken
from the CaptionML property if this property is set. A caption is the text the
system uses to show the identity of a control (for example, in the caption
bar of a form or as the basis for a label for another control).

CaptionML provide the text that will be used to identify a control or other object in the
user interface. CaptionML is multilanguage enabled. This means that it can
contain a list of texts in different languages. The text that is actually used
will be selected according to the current language setting of the user.

Description include an optional description of the table. This description is for internal
purposes only and is not visible to the end user. A short description of the
table’s purpose makes it easier to maintain the application.

DataPerCompany determine whether the system will create a version of the data for each
company in the database.

Permissions define extended permissions for the table.

LookupFormID define the ID of the form you want to use as a lookup.

DrillDownFormID define the ID of the form you want to use as a drill down.

DataCaptionFields define a list of fields to be used as captions when a record from this table is
displayed in, for example, a form.

PasteIsValid tell the system whether it should be allowed to insert records in this table
by pasting.

LinkedObject determine whether this Dynamics NAV table description is to be linked to
an existing SQL Server object.
66

6.2 Viewing and Modifying Properties
For more information about these properties, see the C/SIDE Reference Guide online
Help.

To view or modify table properties:

1 Click Tools, Object Designer (SHIFT+F12) and in the Object Designer window, click
Table to see a list of the tables.

2 Select a table and click Design. C/SIDE displays the table in the Table Designer.

3 Place the cursor on an empty line in the Table Designer (press F3 to create an empty
line) or click Edit, Select Object. (If you place the cursor on a line defining one of the
existing fields in the table, you see the properties for this field instead of those for
the table.)

4 Click View, Properties (SHIFT+F4). C/SIDE displays the Properties window:

5 If you want to modify the setting of a property, simply enter the new value in the
Properties window. When you have entered the new value, update the property by
either pressing ENTER or simply moving the cursor away from the field.

6 To get Help for a property, select it in the Properties window and press F1.

Example

LookUpFormID is a typical example of a property you will want to modify. The default value for the
LookUpFormID property is <Undefined>. By changing this value, you can determine which form the
system will display when F6 (Lookup) is pressed. Look at the LookupFormID property of the
Customer table (18). This property tells C/SIDE which form to use to lookup values in the Customer
table. The value of the property is the Customer List form.

LinkedInTransaction determine whether the linked object supports transactions and can be
accessed within Dynamics NAV transactions or does not support
transactions and is not under transaction control.
This property is only available when the value of the LinkedObject property
is set to Yes.
For more information, see the section "Linked Objects" on page 105.

Property Name Use this property to...
67

Chapter 6. Table Fundamentals
Viewing and Modifying Field Properties
Just like tables, all the fields in C/SIDE have a number of properties that determine their
behavior. When you create a field, C/SIDE automatically suggests a number of default
values for these properties. Depending on the purpose of the field, you will sometimes
want to change these default values.

C/SIDE contains the following field properties:

Property Name Use this property to...

Field No. assign a unique numeric ID to this field.

Name specify the name of the field.

Caption specify the text the system uses to identify a control based on the field.

CaptionML specify the text that is used to identify a control or other object in the user
interface. CaptionML is multilanguage enabled and can contain a list of
texts in different languages.

CaptionClass enable a field in a database table or a control to use caption classes.

Description include an optional description of the field. This description is for internal
purposes only and is not visible to the end user.

Data Type specify the data type of a table field.

Enabled determine whether the field is enabled.

Data Length specify the maximum length of the data stored in this field.

InitValue define an initial value for a field.

FieldClass define the class for a field (that is, specify whether it is a normal field, a
FlowField or a FlowFilter field).

CalcFormula define a formula used by a FlowField.

AltSearchField define an alternative search field.

DecimalPlaces set the number of decimal places shown to the user. This property also
performs validation of whether user input conforms to this setting.

Editable determine whether a field can be edited.

NotBlank force the user to make a non-blank entry in this field.

BlankNumbers tell the system to blank a range of numbers as it formats them.

Numeric force the user to enter numbers in this field.

CharAllowed set the characters you will allow the user to enter in this field.

DateFormula validate the syntax of a date expression entered by the user.

Standard day/time
unit

specify the unit of measure that is used when you enter data into Duration
fields.

MinValue set the minimum value for the contents of a field.

MaxValue set the maximum value for the contents of a field.

Title add a title to a field. The first letter in each word is capitalized.

ValuesAllowed specify the values you want to allow in the field. Can be specified either as
a range or as distinct values, or as a combination of these.
68

6.2 Viewing and Modifying Properties
For more information about these properties, see the C/SIDE Reference Guide online
Help.

To view or modify field properties:

1 Click Tools, Object Designer (SHIFT+F12).

2 In the Object Designer window, click Table to see a list of the tables.

AutoIncrement specify whether or not each field value is automatically given a new
number that is greater than the number given to the previous value.

TableRelation define relationships to other tables. See the section "Setting Relationships
Between Tables" on page 98 for a detailed description of how to create
table relations.

ValidateTableRelation tell the system whether or not it should validate a table relationship.

TestTableRelation tell the system whether or not you want it to include this field when it tests
the table relationships.

TableIDExpr specify the ID of the table to which you want to apply a table filter.

BlankZero define that the field will appear blank if the value is 0 (zero) or FALSE.

DataLength define the length of a data field.

OptionString define an option string (a comma-separated string of options). The
maximum size is 1000 characters.

ClosingDates determine whether closing dates are allowed.

AutoFormatType determine how data is formatted.

AutoFormatExpr determine how data is formatted.

SignDisplacement shift negative values to the right for display purposes.

SQLDataType specify the data type you want to allow in a code field.
This property applies to code fields in the SQL Server Option for Dynamics
NAV.

ClearOnLookup tell the system to delete the current contents of the field before it adds the
value the user selects via the lookup.

SubType define the subtype of a BLOB field, for example a Bitmap or a Memo.

Compressed specify whether or not a BLOB is compressed. This property only applies to
BLOB fields and only on the SQL Server Option.

OptionCaption define the text string options that will be displayed to the user.

OptionCaptionML set the strings that will be displayed to the user for selecting an option.
OptionCaptionML is only used if the field has an OptionString property. The
OptionString property contains the set of values that are acceptable
choices, and it is one of these values that will be saved in the database or
used in C/AL code.

Property Name Use this property to...
69

Chapter 6. Table Fundamentals
3 Select a table and click Design to display it in the Table Designer:

4 Place the cursor on the line in the Table Designer that defines the field whose
properties you want to access.

5 Click View, Properties (SHIFT+F4) to open the Properties window:

6 If you want to modify a property, simply enter the new value in the Properties
window. When you have entered the new value, update the property by either
pressing ENTER or simply moving the cursor away from the field.

7 To get Help for a property, select it in the Properties window and press F1.

Example

The DecimalPlaces property is a typical example of a field property you may want to change. When
you create a new field of type Decimal, C/SIDE will assume that you want the value to be formatted
as a currency. If your decimal field will not contain a currency, you can use this property to
determine the number of decimal places that will appear on the screen. For example, in the G/L
Entry table, the DecimalPlaces property of the Quantity field (Field No. 42) has been set to 0:5. This
means that the minimum number of decimal places you can enter is 0 and the maximum is 5.
70

6.3 Defining Keys
6.3 Defining Keys

The Database Management System (DBMS) keeps track of each field by means of the
field number, and the record's primary key. The primary key is composed of up to 20
fields in a record. The combination of values in fields in the primary key makes it
possible for the DBMS to perform a unique identification of each record. The primary
key determines the logical order in which records are stored, regardless of their
physical placement on disk.

Logically, records are stored sequentially in ascending order, sorted by the primary key.
Before adding a new record to a table, the DBMS checks that the information in the
record's primary key fields is unique, and only then inserts the record into the correct
logical position. Records are sorted "on the fly," so the database is always structurally
correct. This allows fast data manipulation and retrieval.

A table description contains a list of keys. A key is a sequence of one or more field IDs
from the table. Up to 40 keys can be associated to a table. The first key in the list is the
primary key.

The primary key is always active and the DBMS keeps the table sorted in primary key
order and rejects records with duplicate values in primary key fields. Therefore, the
values in the primary key must always be unique. Be aware that it is not the value in
each field in the primary key that must be unique, but rather the combination of values
in all the fields comprising the primary key.

The C/SIDE database system does not support tables that do not have any keys.

How to Define a Primary Key
A maximum of 20 distinct fields can be used in a primary key definition. The number of
fields in the primary key limits the number of fields in the other (secondary) keys.

When you create a table in the table designer, C/SIDE automatically uses the field with
the lowest field number as the primary key.

To define a primary key:

To define a primary key:

1 Assume that you have created the following table in the Table Designer:
71

Chapter 6. Table Fundamentals
2 Click View, Keys to define a primary key. C/SIDE displays the Keys window:

3 In the first line in the Keys window, enter the primary key as a comma-separated list
(for example: ID Number, Name).

How to Create Secondary Keys
Remember that up to 40 keys can be defined for a table, and that the first is the
primary key. All the other keys are secondary keys and are optional. Secondary keys are
used to view records in an order that is different from the order defined by the primary
key fields.

To create a secondary key:

1 Click Tools, Object Designer (SHIFT+F12) and open your table in the Table Designer:

Define the primary key here
72

6.3 Defining Keys
2 Click View, Keys and C/SIDE will display the Keys window for the table:

3 The first line shows the primary key. Enter the secondary keys on the following lines
as comma-separated lists (for example: Name,Address).

Note

The number of fields in the primary key together with all the fields in secondary keys
must not exceed 20.

This means that if your primary key includes four distinct fields, your secondary keys
can include these four fields, and at most 16 other fields. Correspondingly, if your
primary key consists of 20 distinct fields, then your secondary keys must consist only of
combinations of these fields.

A secondary key uses an additional structure called an index. This is similar to the idea
of an index used in textbooks. A textbook index alphabetically lists important terms at
the end of a book. Next to each term are the page numbers where it appears. The
index can be quickly searched to find a list of page numbers (addresses), and the term
easily located by searching the specified pages. The index is an exact indicator that
shows where each term occurs in the textbook.

When you define a secondary key and mark it as active, the system will automatically
maintain an index reflecting the sorting order defined by the key. Several secondary
keys may be active at the same time.

A secondary key can be changed into an inactive key (which doesn't occupy database
space). This means that the DBMS does not use time during updates to maintain its
index. Inactive keys can be reactivated, although this may be time-consuming because
the DBMS has to scan the entire table to rebuild the index.

The fields comprising the secondary keys are not guaranteed to contain unique data,
and the DBMS does not reject records with duplicate data in secondary key fields. If
two or more records contain identical information in the secondary key, the DBMS will
use the primary key for the table to resolve this conflict.

Sort Orders and Secondary Keys
The following example shows how the primary key influences the sorting order when a
secondary key has been activated.
73

Chapter 6. Table Fundamentals
Assume that the Customer table includes four entries (records). The records in the
Customer table have two fields: Customer No. and Customer Name.

The Key List for the Customer table is:

Customer table sorted by the primary key:

If you select the secondary key for sorting, the ordering is based on the contents of the
Customer Name field. As the contents of these fields are not unique, the records have
to be sub-sorted according to the primary key.

In this case the last two records, which have the same Customer Name, have been
ordered by Customer No.

How Keys Affect Performance
Searching for specific data is normally easier if several keys have been defined and
maintained for the table holding the desired data. The indexes for each of the keys
provide specific views that enable quick flexible searches. There are, however, both
advantages and drawbacks to using a large number of keys. Consider the following
situations:

Key No. Key Type Definition

1 Primary Customer No.

2 Secondary Customer Name

Customer No. Customer Name

001 Microsoft® Business Solutions

002 IBM

003 Lotus

004 Microsoft Business Solutions

Customer Name Customer No.

IBM 002

Lotus 003

Microsoft Business Solutions 001

Microsoft Business Solutions 004

If you... Performance improves... Performance slows...

increase the number
of secondary keys
marked as active.

when you retrieve data in several
different sorting sequences because
the system has already sorted the
data.

when you enter data because C/SIDE
has to maintain the indexes for each
secondary key.
74

6.3 Defining Keys
The decision whether to use few or many keys is not easy. The choice of appropriate
keys and the number of active keys to use should be the best compromise between
maximizing the speed of data retrieval and maximizing the speed of data updates
(operations that insert, delete or modify data). In general, it may be worthwhile to
deactivate complex keys if they are rarely used.

The overall speed of C/SIDE depends on a number of factors:

• The size of your database
• The number of active keys
• The complexity of the keys
• The number of records in your tables
• The speed of your computer and its disk system

How Keys Are Stored
As illustrated in the figure on page 60, keys are stored in the Table Description, which
contains a list of keys. The next figure illustrates part of the key list for a Cust. Ledger
Entry table.

The figure shows the first four keys of this table; the primary key and three secondary
keys. The primary key consists of a single field ID. The first secondary key contains two
field IDs, while the second and third secondary keys contain three and four fields,
respectively.

Viewing and Modifying Key Properties
The keys associated with a table have properties that describe their behavior, just as
tables and fields do. When you create a key, C/SIDE automatically suggests a number
of default values for these properties. Depending on the purpose of the key, you will
sometimes want to change these default values.

decide to use only a
few keys.

when you enter data because C/SIDE
has a minimal number of indexes to
maintain.

when you retrieve data. You may
have to define or reactivate the
secondary keys to get the
appropriate sortings. Depending on
the size of the database, this can take
some time, as the system builds the
index.

If you... Performance improves... Performance slows...

Primary Key

Secondary Key

Secondary Key

Secondary Key

1 (Entry No.)

4 (Posting Date)

43 (Positive) 37 (Due Date)

3 (Customer No.)

5 (Document Type)

3 (Customer No.)

6 (Document No.)

36 (Open)

Key Description
3 (Customer No.)
75

Chapter 6. Table Fundamentals
C/SIDE contains the following properties for keys:

Refer to the online C/SIDE Reference Guide for additional information about these
properties.

To view or modify properties for the keys of a particular table:

1 Click Tools, Object Designer, Table to see a list of the tables.

2 Select a table and click the Design button. C/SIDE displays the table in the Table
Designer:

Property Name Use this property to...

Enabled determine whether the system will maintain an index for the key. You
cannot use a key unless it is enabled.

Key define the key.

SumIndexFields determine the fields for which the system will maintain a SumIndex®.

KeyGroups determine which key groups the key is a member of.
By making the key a member of a predefined key group you can have
the key defined and only enable it when it is going to be used.

BackupKey see whether any errors occurred the last time you restored a backup.

MaintainSQLIndex determine whether or not a SQL Server index corresponding to the
Dynamics NAV key should be created.

MaintainSIFTIndex determine whether or not SIFT structures should be created in SQL
Server to support the corresponding SumIndexFields for the Dynamics
NAV key.

SIFTLevelsToMaintain specify which SIFT levels are maintained for a key.
76

6.3 Defining Keys
3 Click View, Keys and C/SIDE displays:

4 Place the cursor on the line defining the key for which you want to view or modify
the properties.

5 Click View, Properties and C/SIDE displays the Properties window:

6 If you want to modify the setting of a property, simply enter the new value in the
Properties window. When you have entered the new value, update the property by
either pressing ENTER or simply moving the cursor away from the field.

7 To get Help for a property, select it in the Properties window and press F1.
77

Chapter 6. Table Fundamentals
6.4 Identifiers, Data Types and Data Formats in the SQL Server Option for
Dynamics NAV

This section describes the identifiers, data types and data formats that are used in the
SQL Server Option.

Naming Identifiers
Identifiers for SQL Server tables and columns are based upon the table names and field
names for the corresponding tables and fields of a Dynamics NAV table definition. If
you set a table’s DataPerCompany property to Yes, the SQL Server table name is
prefixed by the company name. The two names are separated by the ($) symbol. For
example, the SQL Server table name for the Customer table of the CRONUS
International Ltd. company is CRONUS International Ltd_$Customer. If the
DataPerCompany property of a table is set to No, there is no prefix.

The primary key of a Dynamics NAV table is created in a SQL Server table as a primary
key constraint. The name of the primary key will be based on the table name with a
suffix of $0, for example, CRONUS International Lt_$Customer$0. Any secondary keys in
a Dynamics NAV table that must be created and maintained in SQL Server – the
MaintainSQLIndex key property is set to Yes – will have SQL Server indexes created that
are named after an internal key ID with a $ prefix. Examples of this are $1 and $4.

If the database maintains SQL views for language IDs, the system creates a SQL view by
prefixing the SQL Server table name with the Windows language ID. For example, if you
want to refer to the Customer table in the CRONUS International Ltd. company in
German (Standard), the SQL view is DEU$CRONUS International Ltd_$Customer. For
more information about multilanguage functionality, see Chapter 18.

If the database maintains relationships, the system creates foreign key constraints using
the SQL Server table name and TableRelation property information. The names of the
constraints have the following format: <table name>FKT<referencing table
ID>_F<referencing field ID>$T<referenced table ID>. Here is an example using the
Customer table: CRONUS International Ltd_$Customer$FK$T18_F107$T308.

When you create a Dynamics NAV table with keys that contain SumIndexFields®, this
causes additional tables to be created in SQL Server to support the SIFT™ functionality.
These tables are named after the company, the table ID and an internal key ID. For
example, the SIFT table name for SumIndexFields of the key (G/L AccountNo.,Posting
Date) in the G/L Entry table in CRONUS International Ltd. is CRONUS International
Ltd_$17$0.

Important

If you create a Dynamics NAV table with keys that contain SumIndexFields, you must
not give the table the same name as its ID. SIFT tables whose names are the same as
their ID cannot be saved. If you try to do so, you will receive an error message.

Representation of Dynamics NAV Data Types
Every available Dynamics NAV data type is mapped to an appropriate SQL Server data
type in the tables of the SQL Server Option for Dynamics NAV. The following table
78

6.4 Identifiers, Data Types and Data Formats in the SQL Server Option for Dynamics NAV
shows which SQL Server data type is used for the corresponding Dynamics NAV data
type:

Each of the SQL Server data types is created as NOT NULL except the IMAGE type, which
allows NULL.

Compatibility of Data Types
Some of the SQL Server data types listed previously are compatible with other
Dynamics NAV data types. The following table shows the extended compatibility of
SQL Server data types with Dynamics NAV data types:

Dynamics NAV
Data Type

SQL Server
Data Type

Integer INTEGER

Option INTEGER

Code(n) VARCHAR(n)
INTEGER
SQL_VARIANT

Text(n) VARCHAR(n)

Decimal DECIMAL(38,20)

Date DATETIME

Time DATETIME

DateTime DATETIME

Boolean TINYINT

Binary(n) VARBINARY(n)

BLOB IMAGE

DateFormula VARCHAR(32)

TableFilter VARBINARY(252)

BigInteger BIGINT

Duration BIGINT

GUID UNIQUEIDENTIFIER

RecordID VARBINARY(n)

SQL Server
Data Type

Dynamics NAV
Data Type

CHAR(n) Code(n)
Text(n)
DateFormula

NCHAR(n) Text(n)

NVARCHAR(n) Text(n)
79

Chapter 6. Table Fundamentals
Data Format Considerations
When you are using the SQL Server Option for Dynamics NAV, you must be aware of
the effect the data formats will have on the way your data is compared and sorted.

Code Fields
In the SQL Server Option for Dynamics NAV, code fields can be represented by several
SQL Server data types.

Code fields have a property, SQL Data Type, that determines whether they contain
integers, text strings or a mixture of both. You set this property in the following way:

1 Click Tools, Object Designer.

2 Click Table and select the appropriate table.

3 Click Design.

INTEGER Code

TINYINT Integer
Option

SMALLINT Integer
Option

NUMERIC(p,s), MONEY,
SMALLMONEY, REAL,
FLOAT(n), DECIMAL

Decimal
Integer
Option
Boolean

SMALLDATETIME Date

BIT Integer
Option
Boolean

BINARY(n) Binary(n)

TEXT BLOB

NTEXT BLOB

UNIQUEIDENTIFIER Binary(16)
Text(36)

SQL Server
Data Type

Dynamics NAV
Data Type
80

6.4 Identifiers, Data Types and Data Formats in the SQL Server Option for Dynamics NAV
4 Select the field whose data type is defined as code and then click View, Properties.
The Properties window for that field appears:

You can set the SQL Data Type property to Varchar, Integer or Variant. Leaving the
value as Undefined is the same as selecting Varchar, which is the default value.

When you create a table in the SQL Server Option for Dynamics NAV, the code field
data is stored in VARCHAR, INTEGER or SQL_VARIANT columns in the SQL Server table
that correspond to the SQL Data Type property’s values Varchar, Integer or Variant.

When you set the value of the SQL Data Type property of a code field to Varchar, all
the values in the field are compared and sorted as character data, including numeric
values.

When you set the value of the SQL Data Type property of a code field to Integer:

• All the values in the field are compared and sorted as integers. No alphanumeric
values can be stored in the field.

• If you enter negative values in the column outside Dynamics NAV using external
tools, they cannot be read into Dynamics NAV.

• The value "0"(zero) is used to represent an empty string in Dynamics NAV.
• Non-numeric code values or any numeric values beginning with "0"(zero) cannot be

entered in the code field.

When you set the value of the SQL Data Type property of a code field to Variant:

• The values in the field are compared and sorted according to their base data type.
Numeric values are sorted after alphanumeric values.

• Data that is entered into the code field in Dynamics NAV is stored as either the
VARCHAR or INTEGER base data type, depending on the value that has been entered.

• Any value beginning with "0"(zero) can be entered in the code field and is stored as
an INTEGER base data type.

Note

Be aware that not all the third-party tools that can be used to access data in SQL Server
databases support the Variant data type.
81

Chapter 6. Table Fundamentals
Date and Time Fields
SQL Server stores information about both date and time in columns of the DATETIME
and SMALLDATETIME types. For date fields, Dynamics NAV uses only the date part and
places a constant value for the time. For a normal date, this contains 00:00:00:000. For a
closing date, it contains 23:59:59:000 for a DATETIME and 23:59:00:000 for a
SMALLDATETIME.

The Dynamics NAV undefined date is represented by the earliest valid date in SQL
Server: 01-01-1753 00:00:00:000 for a DATETIME, and 01-01-1900 00:00:00:000 for a
SMALLDATETIME.

For time fields, only a SQL Server DATETIME type can be used. Dynamics NAV uses only
the time part and places a constant value for the date: 01-01-1754. The Dynamics NAV
undefined time is represented by the same value as an undefined date.

In order for Dynamics NAV to interpret date and time values correctly, the formats
mentioned earlier must be used when linking Dynamics NAV table definitions to
external tables or views. For more information about this, see page 105.

To reformat a DATETIME or SMALLDATETIME column that is to be used as a date field in
Dynamics NAV, an UPDATE statement can be applied to the table data. Here is an
example of such an update statement:

UPDATE [My Table] SET [My Date] = CONVERT(CHAR(10), [My Date], 102)

For a closing date, a CONVERT style of 120 can be used to set the appropriate time part.
To reformat a time field, a similar statement can be used:

UPDATE [My Table] SET [My Time] = CAST('1754-01-01 '+CONVERT(CHAR(8),
[My Time], 108) AS DATETIME)

As an alternative to modifying the table data, you can create a view that applies the
necessary conversion to the column and gives the column an alias. However, you
cannot update views that are created in this way and it is more efficient to change the
data than to apply conversions for every row.

Note

The information in this section only applies to fields of the Date and Time data type
and does not apply to fields of the DateTime data type.

Accessing Dynamics NAV Tables with External Tools
You can access data in Dynamics NAV tables with external tools, such as Microsoft
Enterprise Manager. When you do this, the values in fields that contain the code, date
and time data types and which have a specific format must be manipulated correctly
for data modification or comparison. When you use external tools, no special
processing of code field data is required to join fields in different tables provided that
you use the same SQL data type value for each code field in a join or CAST the value to
the appropriate data type.

Multilanguage views In the New Database and Alter Database windows, you can select to maintain SQL
views. If you enable this option, SQL Server will create and maintain a view for each
language ID that is added to a table in Dynamics NAV. The system creates a SQL view
82

6.4 Identifiers, Data Types and Data Formats in the SQL Server Option for Dynamics NAV
by prefixing the SQL Server table name with the Windows language ID for each
CaptionML value.

This means that external tools can use a view of the object in the user’s language, for
example Spanish, rather than the object name. The object name could be in an other
language, for example English (United States).

The view is updated by every change in the CaptionML values of a table. For more
information, see "Multilanguage Functionality" on page 465.
83

Chapter 6. Table Fundamentals
6.5 Saving tables and Viewing Sorted Data

When you have designed the fields and keys for a new table, you have to save the table
in the database before you can use it. Once you have saved a table, it appears in the list
of tables shown in the Object Designer.

To save a table in the database:

1 With the table that you want to save open, make sure that the focus is on the Table
Designer and click File, Save. C/SIDE displays:

2 In the ID field, enter a number that will serve as a unique table identification. There
are restrictions about which numbers you can use. Contact your Microsoft Certified
Business Solutions Partner for information.

Viewing data Normally, you use a form to view the data in a table, but you can also view the data
directly by running the table from the Object Designer.

To view the data in a table without using a form:

1 Open the Object Designer (SHIFT+F12) and select the table to view.

2 Click Run and C/SIDE displays the data in a tabular format:

Sorting order The order in which the information appears in the window is determined by the sorting
order defined by the current key. If more than one key is defined for the table, you can
switch between the sorting orders that these keys define.
84

6.5 Saving tables and Viewing Sorted Data
Changing the sort
order

To view the table data in different sorting orders:

1 Open the Object Designer (SHIFT+F12), select the table that you are working on and
click Run to open it.

2 Click View, Sort (SHIFT+F8) and C/SIDE displays:

3 Select the key that defines the sorting order you want, and choose whether you
want the records displayed in ascending or descending order. Click OK or Apply to
apply the new key. If you choose OK, the Sort dialog closes; if you choose Apply, the
Sort dialog stays open. Using Apply is convenient if you frequently change the
sorting order.

Adding records
without using forms

Data is normally entered in a table by using a form, but you can also enter it directly.

Select the key here

Select ascending or
descending order
here
85

Chapter 6. Table Fundamentals
To add records to a table without using a form:

1 Open the Object Designer (SHIFT+F12), select the table and click Run. C/SIDE
displays the table in a tabular format:

2 Place the cursor in an empty line or press F3 to create an empty line. Enter data in
the fields and press ENTER. You can use TAB, SHIFT-TAB and the arrow keys on the
keyboard to navigate between fields.

3 When you have finished entering data, close the table. (You do not have to save it,
because records are saved and updated whenever you leave a field after entering a
value in it.)
86

6.6 Special Table Fields
6.6 Special Table Fields

In addition to the conventional data fields which simply hold values, three kinds of
specialized fields are provided for data retrieval:

• SumIndexFields
• FlowFields
• FlowFilter fields

What Are SumIndexFields?
A SumIndexField is a decimal field that can be attached to a key definition. This is the
fundamental feature of the Dynamics NAV database that forms the basis for FlowFields.
SumIndexFields permit fast calculation of sums of numeric columns in tables, even in
tables with thousands of records. This occurs because SumIndexFields are maintained
when the database record is updated.

What Advantages Do SumIndexFields Offer?
SumIndexFields enable the speedy calculation of sums of columns. The resulting totals
are displayed in FlowFields.

For example, assume you want the sum of all the values in the Amount field. In a
conventional database system, the DBMS is forced to access every record and add each
value in the field Amount. This is a very time-consuming operation in a database with
thousands of records. With Dynamics NAV, it can take as little as two accesses (if the
best key is used) to sum the Amount for these records.

This special index structure, a SumIndexField, is associated with a key. Each key can
have at most 20 SumIndexFields.

During database design, a decimal field can be associated with a key as a
SumIndexField. This tells the DBMS to create and maintain a structure that contains the
accumulated sum of values in a column. When a new current key is selected, any
SumIndexFields associated with it become accessible.

What Are FlowFields?
FlowFields are a powerful feature of the C/SIDE database system, and strongly
influence the way C/SIDE applications are designed. FlowFields and the underlying
concept of SumIndexFields increase performance in such activities as calculating the
balance of your customers. In traditional database systems, this involves a series of
accesses and calculations before a result is available. Why such a result will be
immediately available when you use FlowFields will be clear as you read through the
rest of this section.

FlowFields are not a permanent part of the table data. A FlowField can be thought of as
a virtual field, which is an extension to the table data. Because the information in
FlowFields exists only at run time, values in FlowFields are automatically initialized to 0
(zero). To update a FlowField, use the C/AL function <Record>.CALCFIELDS. If a
FlowField is the direct source expression of a control on a form, the FlowField will
automatically be calculated when the form is displayed.
87

Chapter 6. Table Fundamentals
FlowField Types
There are seven types of FlowFields:

Example

Consider the Customer table in the following figure. This table contains two FlowFields. The field
named Any Entries is a FlowField of the Exist type, and the Balance field is a FlowField of the Sum
type.

FlowField
Type

Field Type Description

Sum decimal The sum of a specified set within a column in a table

Average decimal The average value of a specified set within a column in a table

Exist boolean Indicates whether any records exist within a specified set in a table

Count integer The number of records within a specified set in a table

Min any The minimum value in a column within a specified set in a table

Max any The maximum value in a column within a specified set in a table

Lookup any Looks up a value in a column in another table

Customer

Customer

10040

10030

10010

10000

10020

Name Country/Region Balance
Customer (Table data)

10010
10010

10000

10000

10000

Date Comment Amount

10020

10020

10020

10040

10040

10040

Customer Entry (Table data)

10

20

30

40

50

60

70

80

90

100

110

Modern Cars Inc.

Jean Saint Laurent

Russel Publishing

La Cuisine Française

Windy City Solutions US

US

FR

UK

FR

Virtual part of
the table data

(FlowField)

60

210

300

90

0

Yes

Yes

No

Yes

Yes

(FlowField)
Any Entries

Code
88

6.6 Special Table Fields
The figure shows that the value in the Balance FlowField for customer number 10000 (Windy City
Solutions), is retrieved from the Amount column in the Customer Entry table. The value is the sum
of the amount fields for the entries that have the customer number 10000, that is

Sum = 10 + 20 + 30 = 60.

The values shown in the Balance column in the Customer table for customers number 10010,
10020, 10040 are found in the same way. For customer number 10030 the value is 0 (zero), as there
are no entries in the Customer Entry table that have a Customer No. that equals 10030.

In this example the Balance FlowField in the Customer table reflects the sum of a specific subset of
the Amount fields in the Customer Entry table. How the calculation of a FlowField is to be made,
is defined in a calculation formula. The calculation formula for the Balance field is

Sum("Customer Entries".Amount WHERE(CustNo=FIELD(CustNo)))

Correspondingly, the Any Entries field, which indicates whether any entries exist, has the following
definition:

Exist("Customer Entries" WHERE(CustNo=FIELD(CustNo)))

Creating a FlowField
To create a FlowField:

1 Open the Object Designer (SHIFT+F12) and open the table that you want to add a
FlowField to in the Table Designer. C/SIDE typically displays:

2 Click on the line defining the field that you want to define as a FlowField – in this
case the Amount field.

3 Click View, Properties (SHIFT+F4) and C/SIDE displays the Properties window of the
Amount field:
89

Chapter 6. Table Fundamentals
4 Change the value of the FieldClass property from Normal to FlowField.

5 Enter a calculation formula for the FlowField. This is done with the CalcFormula
property. The next section tells you how.

Calculation Formulas and the CalcFormula Property
A FlowField is always associated with a calculation formula that determines how the
FlowField is calculated. The valid syntax for the CalcFormula property is:

<CalculationFormula> ::=

[-]Exist(<TableNo> [WHERE (<TableFilters>)]) |
Count(<TableNo> [WHERE (<TableFilters>)]) |

[-]Sum(<TableNo>.<FieldNo> [WHERE(<TableFilters>)])|

[-]Average(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |
Min(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |

Max(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |

Lookup(<TableNo>.<FieldNo> [WHERE (<TableFilters>)])

<TableFilters> ::=
[<TableFilter> {,<TableFilter>}]

<TableFilter> ::=

<DstFieldNo>=CONST(<FieldConst>) |

<DstFieldNo>=FILTER(<Filter>) |
<DstFieldNo>=FIELD(<SrcFieldNo>) |

<DstFieldNo>=FIELD(UPPERLIMIT(<SrcFieldNo>)) |

<DstFieldNo>=FIELD(FILTER(<SrcFieldNo>)) |
<DstFieldNo>=FIELD(UPPERLIMIT(FILTER(<SrcFieldNo>)))

where:.

Creating, Viewing and Editing a Calculation Formula
To create, view, or edit a calculation formula:

1 Open the Object Designer (SHIFT+F12) and open the table in question.

2 Select the field for which you want to create, view, or edit the calculation formula.

Symbol Explanation

<TableNo> Specifies the table holding the information to be used in the FlowField.

<FieldNo> Specifies the column from which you want to compute values.

<TableFilters> A list of filters to be used in the computation of the FlowField.

<TableFilter> A table filter can be one of the following: a constant expression, a filter
expression, a value from ordinary fields or a FlowFilter field (FlowFilter fields
are discussed in the next section). Notice that a key for the other table must
exist and include the fields used in the filters.

<DstFieldNo> Specifies the destination field number.

<SrcFieldNo> Specifies the source field number.

<Filter> A filter expression such as 10|20..30.
90

6.6 Special Table Fields
3 Click View, Properties (SHIFT+F4) to open the Properties window.

4 Find the CalcFormula property:

5 You can either enter the calculation formula directly or click the assist-edit button.
When you click the assist-edit button, C/SIDE displays:

6 Click the drop-down button to select the appropriate calculation method. Click the
Reverse Sign option to reverse the sign of the result (only for Sum and Average). Use
the lookup buttons to select the table and column (field) from which to get the
information. If necessary, you can add a table filter to specify a limited set of records.
Click the assist-edit button to the right of the Table Filter field and C/SIDE opens the
Table Filter window:

7 On each line in this window, you can define a field filter. For each field filter, specify
a field, a type, and a value. You can also set the OnlyMaxLimit and the ValueIsFilter
options. The following example illustrates where the information in this window
comes from.

Enter the
calculation
formula here

Each line defines a
field filter. Notice
that there are
implicit logical
ANDs between the
lines.
91

Chapter 6. Table Fundamentals
Example

The Balance at Date field in the G/L Account table is a decimal type FlowField. This field is
calculated from values in the Amount column in the G/L Entry table.

Some of the fields in the G/L Account table are FlowFilter fields. By entering filter expressions into
these fields, the user can affect the calculation of FlowFields (such as Balance at Date) at run time.

The Field column in
the Table Filter
window contains
references to fields
(columns) in the G/L
Entry table.

The Value
column in the
Table Filter
window
contains
references to
fields
(columns) in
the G/L
Account table.

The Amount field
contains the
information to be
summed. This field
is defined as a
SumIndexField in
the key for the G/L
Entry Table.
92

6.6 Special Table Fields
The user can enter filter values in a FlowFilter form:

If the user enters a date filter expression in the Date Filter field, it is transferred via the table filter
and used in the Date column in the G/L Entry table.

You can use the OnlyMaxLimit option to remove the lower limit from a range defined by a filter
expression. For example, if the filter expression is defined as a range x..y, setting the OnlyMaxLimit
option transforms the expression into ..y.

The ValueIsFilter option determines how the system interprets the contents of the field referred to
in the Value column in the table filter window. For example, if the field contains the value
1000..2000, setting the ValueIsFilter option will cause this value to be interpreted as a filter rather
than as a specific value.

Using FlowFilter Fields in the Calculation Formula
Users may want to limit calculations so that they include only those values in a column
that have some specific properties. For example, the user may want to sum only the
amounts of customer entries that are entered in April. This is possible if the application
has been designed using FlowFilter fields in connection with the FlowFields.
.

The figure illustrates the relations between various types of database fields and the
calculation formula. The filters defined in the calculation formula can consist of
constants, values from ordinary fields and of filters given as parameters in FlowFilter
fields. In FlowFilter fields, users can enter a filter value (via the user interface in a C/SIDE
application) that will affect the calculation of a FlowField.

Table A

FlowFields

FlowFilter fields

Ordinary fields

Calculation

Formula

Table B

Table C

Table D

Path for information used in the calculation formula

Path for data used in computation of FlowFields

Constants
93

Chapter 6. Table Fundamentals
6.7 Dividing the Database into Companies

The DBMS can access only one logical database at a time, but this database can be
divided into one or more companies. A company is a "sub-database," and its primary
use is to separate and group data in the same database. Fields and tables are identified
by a number, but companies are identified by a name. A company "bundles" one or
more data tables together into a logical superstructure that is identified by the
company name. Other than the shared company name, the different tables within a
company have nothing in common.

Opening a company is your first step after opening the database or connecting to a
server. How to do this is described in the Installation and System Management manual
for the server that you are using

Consider a database with four tables as shown in this figure:

The four table descriptions on the left apply to each of the data tables, which are
logically sorted into three companies. The records in the tables G/L Account,
Customer and Vendor, all have the same structure and the same field definitions, even
though they belong logically in three different companies. Only the data stored in the
fields differ. As the information in a Table Description can be used by tables from more
than one company, no redundant information will be stored. This minimizes the size of
the database.

Even though you have selected a specific company, you can still access data in any
table in any other company. Use the C/AL function <Record>.CHANGECOMPANY to
explicitly define which other company you want to access.

More than one application can access the same company and the same table(s) at the
same time. How the DBMS controls these multiple accesses is described in the section
What is Table Locking? on page 524.

Data

Data

Common Data

Data

Data

Data

Data

Data

Data

DataG/L Account

Customer

Vendor

Report Menu Option

Company B Company CTable Description Company A
94

Chapter 7

Customizing and Maintaining Tables

As you create tables, you’ll want to take advantage of
properties and triggers. By setting properties for your tables,
you can set up defaults to use throughout your database,
and by defining C/AL code in triggers, you can modify the
system’s default behavior.

This chapter shows you how to use properties and triggers
when you design tables. Furthermore, it shows how to
create relationships between tables. Finally, the chapter
explains how to deal with the problems you may encounter
when you change tables that contain data.

· Using Table and Field Triggers

· Setting Relationships Between Tables

· Changing Tables That Contain Data

· Linked Objects

Chapter 7. Customizing and Maintaining Tables
7.1 Using Table and Field Triggers

C/SIDE recognizes certain things that happen to a table when you use it, for example,
that you insert or modify data. In response, you can get the system to execute C/AL
code defined in a trigger. Triggers are predefined functions that are executed when
certain things happen. The bodies of these functions are initially empty and must be
defined by the developer. Defining C/AL code in triggers allows you to change the
default behavior of the system.

The triggers in a C/SIDE table can be divided into two categories:

• Table triggers
• Field triggers

Tables in C/SIDE have the following triggers:

Fields in tables have these triggers:

If you are not familiar with C/AL programming, please refer to the chapter "Introducing
the C/AL Language" on page 295.

To define or modify a trigger for a table or a field:

1 Open the Object Designer (SHIFT+F12) and click Table to see a list of the tables.

2 Select the table and click Design. The system will open the Table Designer,
containing a list of the fields in the table.

3 Click View, C/AL Code (F9). C/SIDE to see the code for the table in the Table
Designer.

4 The system uses the position of the cursor in the Table Designer to determine what
code to display. If you place the cursor on a specific field in the Table Designer, the
code in the C/AL Editor is automatically scrolled so that the first trigger related to
that field appears at the top of the window. If the cursor is placed on an empty line
in the Table Designer, the system shows the first trigger related to the table itself.
The position of the cursor in the Table Designer does not restrict your access to
other triggers. You can always scroll up and down through the triggers in the C/AL
editor.

Table Trigger Name Executed when...

OnInsert a new record is inserted into the table.

OnModify a record in the table is modified.

OnDelete a record in the table is deleted.

OnRename a record is modified in a field that is part of the primary key.

Field Trigger Name Executed when...

OnValidate data is entered in a field or when <Record>.VALIDATE is executed
in C/AL code.

OnLookup Lookup (F6) is activated.
96

7.1 Using Table and Field Triggers
5 You can now enter or modify the C/AL code in the relevant trigger(s).
97

Chapter 7. Customizing and Maintaining Tables
7.2 Setting Relationships Between Tables

As mentioned in the section "Introduction to C/SIDE Application Design" on page 52, it
is common to distinguish among three types of relationships between tables in
relational database design:

• One-to-Many Relationships
• Many-to-Many Relationships
• One-to-One Relationships

The one-to-many relationship is the most common. If your database design model
indicates that you need to set up a many-to-many relationship, your design is probably
inefficient. You normally break down a many-to-many relationship into two one-to-
many relationships. A one-to-one relationship is usually undesirable and can often be
avoided by simply combining the two tables. To learn more about database design,
refer to one of the "Recommended Books on Database Design" on page 56.

Why Use Relationships?
If your database contains tables with related data you can define a relationship
between them. You relate tables by specifying one or more fields that contain the same
value in related records. These matching fields often have the same name in each table.
You can use relationships to:

• validate data entries.
• perform Lookup in other tables.
• automatically propagate changes from one table to other tables.

Table Relations and the TableRelation Property
Table relations are defined using the TableRelation property. This property is very
flexible and allows you to define both simple and advanced table relations. A typical
simple table relation consists of just a table ID and an optional field ID. Advanced table
relations are typically prefixed with a conditional statement and include filters. The
syntax for table relations is:

<TableRelation> ::=
<TableNo>[.<FieldNo>] [WHERE (<TableFilters>)] |

IF (<Conditions>) <TableNo>[.<FieldNo>]

[WHERE(<TableFilters>)] ELSE <TableRelation>

<Conditions> ::=
<TableFilters>

<TableFilters>::=

[<TableFilter> {,<TableFilter>}]

<TableFilter>::=

<DstFieldNo>=CONST(<FieldConst>) |
<DstFieldNo>=FILTER(<Filter>)
98

7.2 Setting Relationships Between Tables
where:

Creating Basic Table Relations
When you create table relations you can either enter them manually or use the assist-
edit tool. You will usually enter basic table relations such as:

<TableNo>[.<FieldNo>]

directly on the Properties window, but use assist-edit to enter the more advanced
table relations that use conditions and filters. Now you will see how to create (basic)
table relations by entering them directly on the Properties window. In the next section,
you will see how to use the assist-edit tool to do the same.

To create a basic table relation:

1 Open the Object Designer (SHIFT+F12) and click Table to see a list of the tables.

2 Select a table for which you want to create a relationship, and click Design. C/SIDE
opens the table in the Table Designer.

3 Make sure that the cursor is placed in the field for which you want to set up a
relation. Click View, Properties (SHIFT+F4) and C/SIDE will display the Properties
window for the field:

This picture shows the properties of the Tax Group Code field of the Tax Detail table
(322).

4 Enter the table relation directly in the Value field for the TableRelation property.
Simple table relations use the syntax: <TableNo>.[<FieldNo>]. Refer to the next
section to learn how to use the assist-edit tool to create advanced table relations.

Symbol Explanation

<TableNo> Specifies the related table.

<FieldNo> Specifies a field in the related table.

<Conditions> Table relations can be conditional.

<TableFilters> A list of table filters.

<TableFilter> A table filter can be either a constant expression or a filter expression.

<DstFieldNo> Specifies the destination field number.

<Filter> A filter expression such as 10|20..30.
99

Chapter 7. Customizing and Maintaining Tables
Example

Assume that you have an Orders table that stores orders and a Salesperson table that stores the
names of all salespeople in your company. In the Orders table, you can include a field called
Salesperson that identifies the salesperson. By setting up a relationship between these two tables
you can get the system to check whether the Salesperson field in the Orders table contains a valid
code.

Example

Assume that you have a Vendors table with all your vendors and a Currency Code table. You can
create a relationship between a Currency Code field in the Vendors table and the Currency Code
table. This will allow users to lookup (F6) information about valid currency codes.

Furthermore, if you change one of the currency codes in the Currency Code table, the system will
automatically propagate this change to all the tables that refer to this code.

Creating Table Relations with the Assist-Edit Tool
C/SIDE has an assist-edit tool that makes it easier for you to enter advanced table
relations. An advanced table relation is prefixed with a conditional statement and uses
filters.

To create a table relation using assist-edit:

1 Open the Object Designer (SHIFT+F12) and click Table to see a list of the tables.

2 Select a table for which you want to create a relationship, and click Design. C/SIDE
opens the table in the Table Designer.

3 Make sure that the cursor is placed in the field for which you want to set up a
relation. Click View, Properties (SHIFT+F4) and C/SIDE display the Properties window
of that field.

The Orders table Sales-
person

The Salesperson table Code

When data is entered in a field in
the Salesperson column in the
Orders table, the system uses the
relation to the Salesperson table
to check whether the code is valid.

The TableRelation property for the
Salesperson column is set to
Salesperson.Code.
100

7.2 Setting Relationships Between Tables
4 Click the assist-edit button in the Value field of the TableRelation property. C/SIDE
opens the Table Relation window:

This picture shows the Table Relation window of the Tax Group Code field of the
Tax Detail table (322).

5 Use the assist-edit to fill in the Condition fields with the relevant table filters. For
example, you can look up into different tables, based on the value in an option field.

6 In the Table field, enter the name of the table to which you want to make a relation,
or use the lookup button to select the table from a list. In the Field field, you can
enter the name of the field or use the lookup button to select it from a list of the
fields in the table you have entered in the Table field.

If necessary, define a table filter (for the table in the Table field) in the Table Filter
field.

Maintaining Table Relationships on SQL Server
The TableRelation property in Dynamics NAV can be represented in SQL Server by table
relationships known as foreign key constraints. These table relationships are metadata
about the tables and are only intended for modelling and diagramming and are not
used to enforce data integrity. The foreign key constraints are disabled.

The table relationships in SQL Server can be accessed with external tools that can use
this information to generate diagrams illustrating the structure of the database.

You can use the Maintain Relationships option on the Integration tab of the New
Database and the Alter Database windows to enable and disable the table
relationships on SQL Server. For more information about setting this option, see the
manual Installation & System Management: SQL Server Option for Microsoft Dynamics
NAV.
101

Chapter 7. Customizing and Maintaining Tables
Requirements
There are certain requirements that must be met before a TableRelation property can
be represented on SQL Server.

To maintain a table relationship:

• The fields forming the relationship must be of the same data type in both of the
related tables. This also applies to any fields that are specified in the Table Filter
field. Text and code fields are compatible as long as they have the same length.

• The SQL Data Type property of code fields must be the same in both tables.
• The table filter that is part of the table relationship must contain only the FIELD filter

type. Table filters of the CONST and FILTER filter type cannot be created on SQL
Server.

• Conditional relationships have one SQL Server relationship for each condition, as
long as all of the criteria listed here are met by each condition.

Synchronization
The TableRelation properties and SQL Server relationships are automatically
synchronized when you create a table and when you redesign a table. However, there
are some situations in which you might need to manually synchronize the relationships.
For example, after you have:

• deleted a table in the Object Designer.
• restored a database backup.
• imported a.fob file.

To manually initiate the synchronization process:

1 Click File, Database, Alter, and the Alter Database window appears.

2 Click the Integration tab.

3 Enter a check mark in the Synchronize check box and click OK.

This check box is only enabled when there are table relationships that need to be
synchronized because of inconsistencies in the TableRelation properties.

If an error occurs during the synchronization process, you will receive an error message
informing you that a particular table has an invalid relationship. To correct this error,
you must modify the TableRelation property of the table in question in the Table
Designer and then manually synchronize the relationships again.
102

7.2 Setting Relationships Between Tables
Note

Table relationships are not generated or maintained when you import a .txt file.
103

Chapter 7. Customizing and Maintaining Tables
7.3 Changing Tables That Contain Data

When you design the tables in your database, you determine which fields they contain.
But you will often need to modify the design of some of the tables after they have been
in use for a while. Typically you will want to add or delete fields, or make changes to
field names or data types.

Note

C/SIDE ensures that you never lose data when you modify the design of a table that
contains data.

Rules for Changing Tables
You can modify tables that don't contain data at any time. However, when the table
contains data, a number of restrictions apply. The following table lists some general
rules:

Modification Rules

Changing a field name You can always change the name of a field.

Changing a field number You can always change the number of a field. Notice that this
causes Dynamics NAV to run through all the application objects in
order to update all the references to this field. This can be a time
consuming process.

Changing a data type You can change the data type for a field only if there is no data in
this field for any of the records in the table. There is one exception
to this rule: you can change the data type of a field from Code to
Text even if the field contains data for some records.

Adding a field to a table You can always add a field to a table.

Deleting a field In order to delete a field, you must delete all data from the field in
all records in the table. You must also remove all references to the
field from other tables, forms and reports.

Changing the length of a
String field

You can always increase the length of a String field. Whether you
can decrease the length of a String field depends on the contents of
all the values in the column in the table. The minimum length of a
String field is determined by the longest string in the column.
104

7.4 Linked Objects
7.4 Linked Objects

With Dynamics NAV, you can create a table definition for a SQL Server object (user
table, system table or view) that already exists in the current database.

Defining Linked Object Table Properties
You use the table property LinkedObject to link to SQL Server objects by changing the
value to Yes when creating or modifying a table description in the table designer. When
you change this value to Yes, the LinkedInTransaction property becomes available.

The LinkedInTransaction property must be set to No when the Dynamics NAV table
description refers to a view that depends on objects that are outside the current
database or on a linked server.

The LinkedInTransaction property allows you to read and modify data from linked
server data sources, such as Excel, Access or another SQL Server. This access is not
under Dynamics NAV transaction control. This means that if a Dynamics NAV
transaction is aborted, any changes that were made during this transaction to a linked
object that is outside the current database or on a linked server will remain in effect.

For information about linked sever data sources, see "Accessing Objects in Other
Databases or on Linked Servers" on page 108.

Note

You cannot run tables with the LinkedInTransaction property set to No when the
database has been set to single user mode.

Creating a Dynamics NAV Table Description
The following descriptions illustrate the different kinds of Dynamics NAV table
descriptions that you can create, depending on the LinkedObject and
LinkedInTransaction table property values. You must be a member of the db_owner
fixed database role to create a table description.

To create a non-linked table:

• Set the value of the LinkedObject property to No.
• When you save this table, a SQL Server table that is owned by the db_owner fixed

database role is created with the name you have specified (including the company
name, if necessary).

• If an object with this name already exists, an error message is displayed and the table
is not saved.

To create a linked object that is under transaction control:

• Set the LinkedObject property to Yes.
• Set the LinkedInTransaction property to Yes.
• The table is saved without checking its validity. Dynamics NAV will check that the

corresponding SQL object exists and that it is compatible with the Dynamics NAV
table description when the table is accessed.
105

Chapter 7. Customizing and Maintaining Tables
To create a linked object that is not under transaction control:

• Set the LinkedObject property to Yes.
• Set the LinkedInTransaction property to No.
• The table is saved without checking its validity. Dynamics NAV will check that the

corresponding SQL object exists and that it is compatible with the Dynamics NAV
table description when the table is accessed.

Deleting a Dynamics NAV Table Description:
When the LinkedObject property is set to No:

• The SQL Server object is deleted if it is a user table.
• The SQL Server object is not deleted if it is a system table or a view. It can only be a

system table or a view if it has been changed to one of these object types with the
aid of an external tool. The LinkedObject property must be set to Yes in order to be
able to link to a system table or a view.

When the LinkedObject property is set to Yes:

• The SQL Server object is not deleted.

This means that if you create a Dynamics NAV table with the LinkedObject property
set to No and then change it to Yes, its corresponding SQL Server object is not
deleted.

When you modify the LinkedInTransaction property of a Dynamics NAV table:

• All access to the linked SQL Server object will be made under or outside transaction
control, depending on the setting you choose.

When you access data in a linked object:

• If the LinkedInTransaction property is set to Yes, all access to the linked object will
be performed under transaction control – within Dynamics NAV transactions.

• If the LinkedInTransaction property is set to No, all access to the linked object will be
performed outside transaction control – independent of Dynamics NAV transactions.

Requirements for Linking Objects
When you are using a linked object, you should take the following into account:

• The name of the SQL Server object that includes any company prefix and ($)
separator must match exactly with the name of the Dynamics NAV table.

• As is the case when creating regular v tables, you must be a member of the
db_owner fixed database role in the current database.

• As is the case with regular Dynamics NAV tables, the object must exist in the current
database and be owned by a user in the database who is a member of the db_owner
fixed database role. A SQL Server view can be used to access objects outside the
current database (including those residing on separate servers) or owned by other
users. For more information about accessing objects outside the current database,
see page 108.

• Dynamics NAV will automatically grant the required SQL permissions on the object
so that you can access it in the same way that regular Dynamics NAV tables are
106

7.4 Linked Objects
accessed. It will then be subject to permissions assigned in the Dynamics NAV
security system.

• The object being linked must have a SQL Server table definition that is compatible
with the Dynamics NAV table definition.

• A view that cannot be updated in SQL Server (for example one containing
computed/converted columns or unions) will also be read-only if it is used as a
linked object from Dynamics NAV. With SQL Server 2000, you can write Instead-Of
triggers to define the logic that allows such a view to be updated. This logic is not
part of Dynamics NAV.

Rules Determining Compatibility
There are a number of rules that you need to keep in mind when you use linked
objects:

• All columns in the object must be type compatible with those named in the
Dynamics NAV table definition. It is not necessary to name all the columns in the
Dynamics NAV table definition. For more information about type compatibility, see
page 79.

• SumIndexFields cannot be defined for any object type.
• If the object is a user table, it must have a primary key constraint that contains the

same number of columns as those listed in the Dynamics NAV primary key, and
these columns must have the same names.

• If the object is a view or system table, a primary key must be defined, and any
secondary keys may also be defined if required. These keys will only be used in
Dynamics NAV. They will have no effect on a view, its underlying objects in SQL
Server or on a system table. It is important that the data in the columns named in
the primary key is unique. This will not be enforced as a physical constraint by the
view or system table in SQL Server. However, Dynamics NAV will order the data as
though a primary key was physically defined. Dynamics NAV relies on this
uniqueness in order to correctly identify and order records.

• If the object is a view, it can have only one column of the SQL Server timestamp
type, but it does not need to have any unless BLOB fields are present in the
Dynamics NAV table definition. A timestamp column must exist in a user table.

• An IDENTITY column can be used in a user table or a view, and Dynamics NAV will
ignore this column when inserting records into the table. This allows the IDENTITY
column to be used as intended. Similarly, a computed column in a user table is also
ignored. For a view, a column defined on a computed table column cannot be used
if insert operations are required.

• You cannot link to a SQL Server temporary table.
• Multilanguage views are not created or maintained for linked objects. For more

information about multilanguage views, see the section “Creating and Maintaining
Databases” in the manual Installation & System Management: SQL Server Option for
Microsoft Dynamics NAV.

Once an object has been linked, Dynamics NAV treats it like a regular table. However,
depending on the object type, SQL Server may prevent certain operations from taking
place. For example, a non-updateable view cannot be updated in Dynamics NAV, and a
SQL Server error message appears if you attempt to do this. The ability to redesign the
object from within Dynamics NAV is limited, and these restrictions are described in the
next section.
107

Chapter 7. Customizing and Maintaining Tables
Redesigning the Dynamics NAV Linked Object Table Definition
A Dynamics NAV linked object table definition can be redesigned in accordance with
the following rules:

• It cannot be renamed by changing the table definition name or the company name.
• No fields in the table definition can be renamed.
• New fields can be added providing they exist in the view, and existing fields can be

deleted. In either case, the definition of the view in SQL Server is not changed.
• The primary and secondary key definitions can be changed. Also, new keys can be

added, and existing keys can be deleted.
• The Dynamics NAV field data types can be modified provided that the new type

remains compatible with the column type in the view.
• A linked user table can undergo any design changes that are applicable to a regular

table that is created from within Dynamics NAV.
• If the DataPerCompany property of the Dynamics NAV table definition is changed, it

will result in an attempt to link to a new object. This new object will be based on the
new company name. The previously linked SQL Server object will no longer be
linked by the table definition.

• The LinkedObject table property can only be changed from Yes to No for a user
table.

Accessing Objects in Other Databases or on Linked Servers
You can access objects outside the current database or server from Dynamics NAV by
linking to an appropriately defined view in the current database. You can create a view
definition outside of Dynamics NAV that accesses data on SQL Server linked servers,
which can access heterogeneous data sources. This could, for example, involve
performing a join of an Oracle table, a Microsoft Access table or a Microsoft Excel
spreadsheet.

To access objects in other databases or on linked servers you must comply with the
following rules:

• You must set the LinkedInTransaction table property to No in order to use a view
referring to objects outside of the current database. The ability to modify data in
these objects is dependent on the data providers that the objects refer to.

• You must be a member of the db_owner fixed database role in the current database
to access objects in other databases or on linked servers.

• All security permissions for objects in another database or on linked servers must be
granted outside Dynamics NAV to the appropriate SQL Server logins.

• If a linked object refers to a view that accesses objects that are stored in another
database on the same server, this view must be treated as though it were accessing a
linked server.
108

Chapter 8

Special C/SIDE Tables

In addition to the normal database tables, C/SIDE has three
other types of tables that serve special purposes in C/SIDE
applications. These are called temporary, system and virtual
tables. Temporary tables are used as a repository for
temporary information at run time, while the two other
types are system generated tables that provide various
information about the current state of the system.

This chapter introduces you to the special C/SIDE tables and
explains how to use them in your design.

· What Is a Temporary Table?

· What Is a System Table?

· What Is a Virtual Table?

Chapter 8. Special C/SIDE Tables
8.1 What Is a Temporary Table?

A temporary table can be regarded as a temporary variable that holds a table. A
temporary table is used as a buffer for table data in your C/AL programs. If you are not
familiar with C/AL, please refer to "Introducing the C/AL Language" on page 301.

You can do almost anything with a temporary table that you can do with a normal
database table. The differences between a normal database table and a temporary
table are:

• Temporary tables aren’t stored in the database, but are only held in memory until
the table is closed.

• The write transaction principle that applies to normal database tables does not apply
to temporary tables. If you are not familiar with the transaction principle, see the
section "Write Transactions and Recovery" on page 528.

The advantage of using a temporary table is that all the interaction with a temporary
table takes place on the client. This reduces the load on both the network and the
server.

When you need to perform many operations on the data in a specific table in the
database, you can load the data into a temporary table while you modify it. Loading
the data into a temporary table speeds up the process because all the operations are
performed locally on the client.

The temporary
tables are stored
only on the client.

C/SIDE
Client

C/SIDE
Server

C/SIDE
Client

C/SIDE
Client
110

8.1 What Is a Temporary Table?
Defining and Using a Temporary Table
You must define the temporary table before you can use it in your C/AL code. The
variable that holds a temporary table is defined just like any other global or local
variable.

To define a temporary table:

1 Open the Object Designer (SHIFT+F12) and create a new table.

2 Click View, C/AL Globals or C/AL Locals, depending on whether your variable is
going to be global or local.

If you choose C/AL Globals, the C/AL Globals window appears:

3 Enter a name for the temporary table variable, and enter or select Record as the data
type. Use the lookup button in the Subtype field to select the table to copy.

4 With the cursor still on the line that defines the temporary table, click View,
Properties (SHIFT+F4) to display the Properties window:

5 Change the value of the Temporary property to Yes.

After you have created a temporary table, you can use it in your C/AL code. You can
apply filters and perform searches just as you can with normal database tables.
111

Chapter 8. Special C/SIDE Tables
8.2 What Is a System Table?

System tables are stored in the database just like normal database tables. However,
unlike normal database tables, they are created automatically by the system. The
information in system tables is closely related to the DBMS, which uses the system
tables to manage, for example, system security and permissions in C/SIDE.

You can read, write, modify and delete the information in system tables.

There are eight system tables in C/SIDE:

• User
• Member Of
• User Role
• Permission
• Windows Access Control
• Windows Login
• Company
• Database Key Groups

The first six tables in this list deal with system security.

About permissions

In order to insert, modify or delete information in the User, Member Of, User Role,
Permission, Windows Access Control and Windows Login tables, you must have at
least the same permissions as the users whose permissions you want to modify. This
means that you can only assign or take away permissions that you yourself have.

The following subsections provide an overview of these system tables. For further
information about security in Dynamics NAV, see the Installation & System
Management manual for the server option that you are using.

C/SIDE
Client

C/SIDE
Server

 System tables are stored
in the database like
normal database tables.

C/SIDE
Client

C/SIDE
Client
112

8.2 What Is a System Table?
The User System Table
The User system table gives you an overview of all the user IDs with database logins
that you have created for users in your database. Each record in the User table defines
a single user ID.

The User table contains information about the password (displayed in encrypted form
on screen), the real name of the user, and how long the user's ID is valid for each user
ID defined in your database. You can create new user IDs by entering the appropriate
data in this table. You can also remove a user ID by deleting the record from this table.
(Of course, this depends on your own permissions.)

Deleting a record

If you delete a record in the User system table, the corresponding entries in the
Member Of system table are automatically deleted.

The Member Of System Table
The Member Of system table gives you an overview of which user groups (roles) that
each user is a member of. Each user (ID) can be a member of any number of user
groups.
113

Chapter 8. Special C/SIDE Tables
The User Role System Table
The User Role system table gives you an overview of the user roles in your database. A
user role specifies a set of permissions. The exact permissions for each user role are
defined in the Permissions system table.

Deleting a Record

If you delete a record in the User Role system table, the corresponding entries in the
Member Of and Permission system tables are also automatically deleted.

The Permission System Table
You can use the Permission system table to define what the different user roles are
allowed to do. Permissions are specified for objects; so you can specify the exact set of
permissions per table, form, and so on. You can specify that a user role has no (blank
field), Full (Yes), or Indirect permissions to perform the following actions:

• Read
• Create/Insert
• Modify
• Delete
• Execute
114

8.2 What Is a System Table?
The Windows Access Control System Table
You can use Windows Access Control system table to manage the Windows access
rights of a user or group of users, and thereby control their access to Dynamics NAV.
Each user's or group's Windows login has a unique security identifier (SID). In addition,
each user or group has a role ID, which relates to a set of permissions within a certain
company in Dynamics NAV. The information displayed in the Login ID and Role
Name fields is based on the login SID and role ID, respectively.

The Windows Login System Table
You use the Windows Login system table to define which Windows users and groups
can log on to the system. Only those Windows users or those who are members of a
Windows group that are listed here can log on. Each Windows user or group has a
unique security identifier (SID). The name of the user or group that is displayed in the
ID field is generated from the name of the user or group that is identified by the SID.
The Name field is currently unused.

The Company System Table
The Company system table gives you an overview of the companies in your database.
It contains a record for each company in your database. You can create a new company
by entering a new record in this table. You can also delete a company from your
database by deleting the corresponding record in the Company table.
115

Chapter 8. Special C/SIDE Tables
When you delete a company, you delete all the tables in the company and all the
permissions that include this company.

The Database Key Groups System Table
The Database Key Groups system table gives you an overview of the key groups
defined in your database. Each record in this table shows a key group.

Note about Key Groups

By making your keys members of key groups, you can activate or deactivate various
combinations of keys in your tables by enabling or disabling the key groups.

To enable and disable key groups:

1 Click File, Database, Information and the Database Information window appears.

2 Click Tables and the Database Information (Tables) window appears.

3 Click Key Groups and the Database Key Groups window appears:

4 Select a key group and click Enable or Disable to enable or disable it.
116

8.3 What Is a Virtual Table?
8.3 What Is a Virtual Table?

A virtual table contains information provided by the system. In C/SIDE you have access
to a number of virtual tables. They work in much the same way as normal database
tables, but you cannot change the information in them. That is, you can only read the
information. Another difference is that virtual tables are not stored in the database (as
normal tables are) but are computed by the system at run time.

When to Use Virtual Tables
Virtual tables give you a consistent interface to a variety of different information.
Because a virtual table can be treated just like an ordinary table, you can use the same
methods to access information in virtual tables as you use when you are working with
ordinary tables. For example, you can use filters to get subsets or ranges of integers or
dates.

The virtual tables provide such information as:

• integers in the range – 1.000.000.000 to 1.000.000.000.
• dates within a given period.
• an overview of the operating system files.
• an overview of the logical disk drives.
• a trace of database requests from your client to the database.
• an overview of the users that are currently connected to the database.
• an overview of the operating system files that store the database.

Overview of the Virtual Tables
C/SIDE contains numerous virtual tables, including:

Using the Virtual Tables
The first of these virtual tables gives you easy access to dates, integers, information
about your operating system files, and the logical drives on your computer.

Because the virtual tables are not stored in the database, you cannot view them
directly. To view a virtual table, you must create a tabular form based on it.

To view a virtual table:

1 Open the Object Designer (SHIFT+F12).

2 Click Form, New to open the New Form window.

Virtual Tables

Date, Integer, File, Drive, Monitor, Session, Database File, Table Information, Field, Key,
Server, Windows Object, Windows Group Member, SID - Account ID, User SID
117

Chapter 8. Special C/SIDE Tables
3 Select the Create a form using a wizard option and make sure you select the
Tabular-Type Form:

4 In the Table field enter the name of the virtual table that you want to base the form
on. Alternatively you can use the lookup button to select the table from a list of all
the tables in the database. The virtual tables use the highest number range
(2000000001 – 2000000203). In this example we use the Date table.

5 Click OK and the Tabular-Type Form Wizard appears:

6 Click the >> button to move all the available fields over to the Field Order field.

7 Click Preview to view the table and its contents. Alternatively, click Finish and save
the form.

This is the method used in the rest of this chapter to view virtual tables.

The Date Virtual Table
This virtual table gives you easy access to days, weeks, months, quarters and years. The
Date virtual table has the following fields:

Field Comments

Period Type Days, weeks, months, quarters or years

Period Start The date of the first day in the period

Period End The date of the last day in the period

Period No. The number of the period
118

8.3 What Is a Virtual Table?
The following picture illustrates how you should think of the Date virtual table. For
each period type, there are many records in the Date table:

You can apply filters to the Period Type, Period Start, and Period End fields to easily
get a subset or range of days, weeks, months, quarters or years to use in your forms or
reports.

Example

The Date virtual table is most frequently used to provide a range of dates, the Receivables-
Payables form is a typical example.

The Integer Virtual Table
This virtual table includes integers in the range – 1,000,000,000 to 1,000,000,000. The
Integer virtual table contains only one field:

Period Name The name of the period

Field Comments

This information is
provided by the Date
virtual table

Field Comments

Integer An integer in the range -1.000.000.000 to 1.000.000.000
119

Chapter 8. Special C/SIDE Tables
By applying a filter to this virtual table, you can easily get a subset or range of numbers
that can be used to control looping in reports.

The File Virtual Table
This virtual table gives you an overview of the files in a directory on your disk system.
The File virtual table contains the following fields:

You must create a tabular-type form to access the File virtual table:

The Drive Virtual Table
This virtual table gives you an overview of the logical drives on your computer. The
Drive virtual table contains the following fields:

Field Comments

Path The filter on this field determines which directory will be shown.

Is a File The value Yes indicates that the entry is a file, while the value No
indicates that the entry is a directory.

Name The name of the file or directory.

Size The size of the file in bytes.

Date The date the file was last modified.

Time The time the file was last modified.

Data A BLOB field with the contents of the file.

Field Comments

Drive The name of the drive, such as A: or D:

Removable Indicates whether the disk is removable (a floppy disk or CD ROM)
or a fixed disk

Size (KB) The total size of the disk

Free (KB) The amount of free space on the disk
120

8.3 What Is a Virtual Table?
You must create a tabular-type form to access the Drive virtual table:

Note

If there is no disk in your disk drive, the Size (KB) and Free (KB) fields will contain -1.

The other virtual tables are most commonly used by the system administrator. They
give the system administrator information about the users that are currently connected
and the current state of the system.

The Monitor Virtual Table
This virtual table traces all the database requests made by the client to the tables in
your database. The Monitor virtual table is used by C/AL programmers to get an
overview of the amount of time that specific operations take. C/AL programmers can
use the information in this virtual table to optimize the performance of their code.

The Monitor virtual table contains the following fields:

Field Comments Possible Values

Entry No. Successive numbers
that are increased for
each database
request

From 1 to 231-1

Function Name The type of database
request

LOCKTABLE, DELETE, MODIFY, INSERT, DELETEALL,
Create Key, Delete Key, Redesign Table, FIND/NEXT,
CALCSUMS, CALCSUMS (Slow), COMMIT, Delete Table,
Create Database, Close Database, Open Database,
Delete Database, Expand Database, Get Table Statistics,
COUNT, Get Database Statistics, Optimize Key, Login,
Read Database Block, Read BLOB, Insert BLOB, Delete
BLOB, Clear Old Versions, Get Database Free Percent,
Preload Database Block, and so on.

Parameter No. The number of the
parameter

Depending on the number of parameters
121

Chapter 8. Special C/SIDE Tables
To access the Monitor virtual table, click Tools, Client Monitor and the Client Monitor
window opens:

The Client Monitor window contains two tabs. You use the Options tab to specify the
kind of information that is collected by the Client Monitor.

Parameter The name of the
parameter

Table, Key, Order, Filter, Search Method, Search Result,
Records Found, Sum, CPU (ms), Records Read, Sum
Intervals, Records Deleted, Records Modified, Disk
Reads, Disk Writes, Record, Wait, SumIndexFields, BLOB
Field, Commit, User ID, File Name, Source Object, Source
Trigger/Function, Source Line No., Source Text, Record
Count, Timeout Status, Time Out (ms)

Number If the parameter is a
number, the value is
shown in this column

Any numeric value

Data Any non-number
parameter is shown in
this column

Any string

Field Comments Possible Values
122

8.3 What Is a Virtual Table?
The Options tab contains the following parameters, and the advanced parameters are
only available in the SQL Server Option:

Client Monitor – Additional Parameters for the SQL Server Option
Some extra parameters are available on the Client Monitor to improve troubleshooting
and performance analysis when you are running the SQL Server Option for Dynamics
NAV. These parameters can be configured dynamically and include status information
about caching, SQL statements and execution plans.

Collecting server statistics is time-consuming. If you are performing benchmarking to
get the most accurate value for the Elapsed Time (ms) parameter, you should not
collect statistics at the same time.

Similarly, displaying the execution plans is extremely time-consuming and should not
be done when you are benchmarking. This parameter is useful when you are

Parameter Behavior When Selected

Include Object table activity Every function that acts on the Object table is written to
the Client Monitor.

Retain last source information The parameters Source Object, Source Trigger/Function,
Source Line No. and Source Line are written to the Client
Monitor even for functions that are not related to the
execution of C/AL code.

Show SQL statement The SQL statement is displayed.

Use placeholders The SQL statement uses '?' placeholders instead of filter
values.

Show server statistics The following statistics are collected – 'Server Time',
'Logical Reads' and 'Records Read'.

Show execution plan and SQL index The SQL plan is displayed (for most statements), as a
collapsed tree with the format:

Plan Step(Object)[n,p];... Here, node n has parent p.
Example:
Computer Scalar[2,1];Clustered Index Seek(User$0)[4,2]

This defines the tree:
1 -- Root
---------2 -- Computer Scalar
------------------4 -- Clustered Index Seek(User$0)

The SQL index is also displayed as a list of fields in the
same way as the Order parameter.

Show extended status information The SQL status displays additional information:
internal unique statement ID,
reuse status,
prepared status,
cursor type,
optimizer hints,
transaction type.
123

Chapter 8. Special C/SIDE Tables
troubleshooting problematic application areas to determine if a particular SQL
statement is a bottleneck, and can be valuable to users who are unable to run the SQL
Profiler tool.

Note

Executing a SQL statement in the Query Analyzer to use its graphical execution plan
does not necessarily give the same plan or statistics as when the same statement is
executed from within Dynamics NAV. This is due to cursor type differences. The SQL
Profiler or the Client Monitor SQL Plan parameter give the most accurate plan.

Showing extended status information is useful when you want to see which properties
of a SQL statement are being used in an operation. It is also possible to see how
frequently statements are being reused or re-created. The unique ID can be used to
cross-reference the statements that are being reused and determine the original SQL
statement entry.

To use the Client Monitor to monitor server calls:

1 Click Tools, Client Monitor to open the Client Monitor.

2 Click the Options tab and select the parameters that you want to use.

3 Click Start to activate the Client Monitor.

4 You can now close the Client Monitor window while you perform the tasks that you
want to investigate.

5 When you have completed these tasks, click Tools, Client Monitor to open the Client
Monitor window again.

6 Click Stop to stop the Client Monitor.
124

8.3 What Is a Virtual Table?
The Session Virtual Table
This virtual table gives you an overview of the users that are connected to C/SIDE
Database Server (NDS) or to SQL Server.

The Session virtual table contains the following fields:

Field Comments SQL
Server

NDS

Connection ID The ID of the connection. X X

User ID The user ID of the connected user. X X

My Session Whether or not a session belongs to you. X X

Login Time The time when the user logged in and started this
session.

X X

Login Date The date when the user logged in. X X

Database Name The name of the database that this session has
opened.

X X

Application Name The name of the application connected to the
server.

X X

Login Type Whether this session is a Windows login or a
database login.

X X

Cache Reads The number of cache read operations performed by
this session.(A)

X

Disk Reads The number of disk read operations performed by
this session.(A)

X

Disk Writes The number of disk write operations performed by
this session.(A)

X

Records Found The number of records found since this session
logged in.

X

Records Scanned The number of records scanned by this session
since they logged in.

X

Records Inserted The number of records inserted by this session since
they logged in.

X

Records Deleted The number of records deleted by this session since
they logged in.

X

Records Modified The number of records modified by this session
since they logged in.

X

Sum Intervals The number of jumps between value intervals made
by the system when calculating sums since this
session logged in. A high value may indicate that an
inefficient key is being used.

X

Host Name The name of the workstation used by this session. X

CPU Time (ms) The cumulative amount of CPU time by this session. X
125

Chapter 8. Special C/SIDE Tables
(A) Only if Commitcache = Yes

Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Dynamics NAV, it must be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message appears.

C/SIDE uses the Session virtual table to display database information.

To access this virtual table from C/SIDE:

1 Click File, Database, Information and the Database Information window appears.

2 Click the Sessions tab.

Memory Usage (KB) The number of kilobytes in the procedure cache
that are currently allocated to this session.

X

Physical I/O The cumulative amount of disk reads and writes for
this session.

X

Idle Time The amount of time that has passed since the server
last received a database request from this session. If
the field is empty, the session is currently
performing a database request. This could be a
long running database request, such as a table
redesign.

X X

Blocked Whether or not this session is blocked (waiting to
acquire a lock) by another session.

X

Wait Time (ms) The amount of time that this session has been
waiting.

X

Blocking Connection ID The ID of the connection that is blocking this
session.

X

Blocking User ID The user ID of the connection that is blocking this
session.

X

Blocking Host Name The name of the workstation used by the
connection that is blocking this session.

X

Blocking Object The name of the SQL object that is blocking this
session.

X

Field Comments SQL
Server

NDS
126

8.3 What Is a Virtual Table?
3 Click the AssistButton o in the Current Sessions field and the Database Sessions
window (SQL Server Option) appears:

Note

Depending on which server option you are running, the Database Sessions window
displays different fields from the Session virtual table.

An administrator can terminate one of the sessions by selecting the line in question and
deleting it. The user will then be disconnected from the server and will have to restart
the program if they want to continue working. To terminate a session, the
administrator must have permission to delete data from the Session table.

Furthermore, on the SQL Server Option, the administrator must be a member of either
the sysadmin or processadmin SQL Server server roles.

Note

On C/SIDE Database Server, the terminated session will no longer take up any
resources on the server.
127

Chapter 8. Special C/SIDE Tables
The Database File Virtual Table
This virtual table gives you an overview of the operating system files that store the
database. The Database File virtual table contains the following fields:

(A) Only if Commitcache = Yes

(B) Not available in the SQL Server Option for Dynamics NAV.

Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Dynamics NAV, it will have to be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message appears.

C/SIDE uses this virtual table to show database information.

To access the Database File virtual table:

1 Click File, Database, Information and the Database Information window appears.

2 Click the Database tab.

3 In the Database Name field, click the AssistButton o and the Database Files
window appears:

Field Comments

No. The number of the operating system file.

File Name The operating system file name.

Size (KB) The size of the operating system file in KB.

Total Reads The number of read accesses since the database was opened.(B)

Mean Read Time (ms) The average time for a read operation (in milliseconds).(B)

Reads In Queue Number of read operations waiting in queue.(A)(B)

Total Writes Number of write operations since the database was opened.(B)

Mean Write Time (ms) The average time for a write operation (in milliseconds).(B)

Writes In Queue Number of write operations waiting in queue (in milliseconds).(A)(B)

Disk Load (%) A percentage weight describing the load on the disk.(B)
128

8.3 What Is a Virtual Table?
Note

The Database Files window displays only some of the fields in the Database File
virtual table. This window does not appear in the SQL Server Option.

The Table Information Virtual Table
This virtual table contains information about database tables. The Table Information
virtual table contains the following fields:

(A) Not available in the SQL Server Option for Dynamics NAV.

Important

If a solution uses any of the fields that are not available in the SQL Server Option, it
must be modified to run on SQL Server. These columns will not be created on SQL
Server. If the program tries to access them, an error message appears.

To access the Table Information virtual table:

1 Click File, Database, Information and the Database Information window appears.

2 Click Tables and the Database Information (Tables) window appears:

Field Comments

Company Name The name of the company the table belongs to.

Table No. The ID number for the table.

Table Name The name of the table.

No. of Records The number of records in the table.

Record Size A value expressing the average size of a record. Calculated as
1024*Size(KB)/Records.

Size (KB) How much space the table occupies in the database (in KB).

Optimization A percentage of Size that expresses how much data there is in a table.
Some of the remaining size is used for internal administration in the
table while other is slack-space. Slack-space can be minimized by
optimizing the table.(A)
129

Chapter 8. Special C/SIDE Tables
Note

This screen shot displays the Database Information (Tables) table for the SQL Server
Option. On C/SIDE Database Server this window contains an extra field and an extra
button.

The Field Virtual Table
This virtual table contains information about fields in database tables. The Field virtual
table contains the following fields:

You must create a tabular-type form to access the Field table:

The Key Virtual Table
This virtual table contains information about the keys that are defined in each table in
the database.

Field Comments

TableNo The ID number for the table.

No. The number assigned to the field.

Table Name The name of the table.

FieldName The name of the field.

Type The data type assigned to the field, for example, decimal.

Len The length of the field entry in bytes.

Class The class of the field, for example, FlowField.

Enabled Whether the field is enabled.

Type Name The data type assigned to the field. The length of the field entry in bytes is
included for Code and Text data types.

Field Caption The caption of the field in the language that has been selected.

RelationTableNo The ID number for the table that the field is related to.

RelationFieldNo The number of the field in another table that the field is related to.

SQLDataType The data type assigned to code fields in the SQL Server Option.
130

8.3 What Is a Virtual Table?
The Key virtual table contains the following fields:

You must create a tabular-type form to access the Key table:

The Server Virtual Table
If you are running on the SQL Server Option for Dynamics NAV, you can access the
Server virtual table.

The Server table contains the following fields:

Field Comments

TableNo. The ID number for the table.

No. The number of the key.

TableName The name of the table.

Key The fields that make up the key.

SumIndexField The SumIndexFields that are defined for this key.

SQLIndex The actual fields that have been defined in Dynamics NAV and are
used in the corresponding index on SQL Server instead of those
defined in the key.

Enabled Whether or not the index is enabled. This field can be modified.

MaintainSQLIndex Whether or not the MaintainSQLIndex property has been activated.
This field can be modified.

MaintainSIFTIndex Whether or not the MaintainSIFTIndex property has been activated.
This field can be modified.

Clustered Whether or not the key is clustered. This field can be modified.

Field Comments

Server Name The name of the computer on which the server is installed.

My Server Whether or not this is the server that you are logged on to.
131

Chapter 8. Special C/SIDE Tables
You must create a tabular-type form to access the Server table:

The Windows Object Virtual Table
This virtual table gives you an overview of the Windows users and Windows groups
that can be integrated into the Dynamics NAV security system. You can see this
information when Dynamics NAV is running on a client that is Active Directory enabled.
Dynamics NAV retrieves the data from Active Directory.

The Windows Object virtual table has the following fields:

Field Comments

GUID The globally unique identifier (GUID) for the Windows user or group.

ID The ID of the Windows user or the Windows group. This information is
displayed in the User ID fields of the User and Member Of system
tables.

Name The name of the Windows object. This object can be a Windows user
or a Windows group. The object name is displayed in the Name field
of the User system table and in the User Name field of the Member
Of system table.

Type Whether the object is a Windows user or a Windows group.

SID The unique security identifier (SID) of the Windows user or group.

Distinguished Name Identifies the domain that holds the Windows object as well as the
complete path to the object. Every object in the Active Directory has a
unique distinguished name.
132

8.3 What Is a Virtual Table?
You must create a tabular-type form to access the Windows Object table:

The Windows Group Member Table
This virtual table contains information about the members of Windows Groups who
can be integrated in the Dynamics NAV security system. A Windows group member
who has permissions in the Dynamics NAV security system does not have to enter a
password when they log on to Dynamics NAV.

You can see this information when Dynamics NAV is running on a client that is Active
Directory enabled. The Windows Group Member virtual table contains the following
fields:

You must create a tabular-type form to access the Windows Group Member table:

The SID - Account ID Virtual Table
This virtual table can convert the security identifier (SID) of a Windows object into an
ID. It can also convert an ID of a Windows object into a SID. The Windows object can be
a Windows user or group. The ID is calculated on the basis of the SID.

Field Comments

Group GUID The globally unique identifier (GUID) of the Windows group.

Member GUID The GUID for the Windows group member.

Group ID The ID of the Windows group to which the Windows group member belongs.

Member ID The ID for the Windows group member.
133

Chapter 8. Special C/SIDE Tables
If you request a record with a specific SID, C/SIDE looks up the information in the SID -
Account ID virtual table and returns the ID.

The SID - Account ID virtual table has the following fields:

Note

This table will always appear to be empty.

You must create a tabular-type form to access the SID - Account ID table:

The User SID Virtual Table
This virtual table shows the security identifiers (SIDs) and IDs of the groups that the
user who is logged on to the system is a member of. The User SID virtual table has the
following fields:

Field Comments

SID The security identifier (SID) of the Windows user or group.

ID The ID of the Windows user or group. The ID is calculated on the basis of
the SID.

Field Comments

SID The security identifier (SID) of the groups that the user who is logged on to
the system is a member of.

ID The ID of the groups that the user who is logged on to the system is a
member of. The ID is calculated on the basis of the SID.
134

8.3 What Is a Virtual Table?
You must create a tabular-type form to access the User SID table:
135

Chapter 8. Special C/SIDE Tables
136

Part 4
Forms

Chapter 9

Form Fundamentals

Forms are used to enter and display data. For example, you
can use a form to enter information about new customers or
to update and review information about existing customers.

This chapter introduces the fundamental concepts and basic
tasks involved in designing and using forms.

· What Are Forms?

· Creating Forms

· Saving, Compiling and Running Forms

Chapter 9. Form Fundamentals
9.1 What Are Forms?

After you have created tables, the next step in developing a C/SIDE application should
be to design forms. In contrast to programs written in traditional programming
languages, C/SIDE applications do not execute sequentially: they are event-driven. A
major part of the logic of an application could be said to rest with the forms. You use
forms to enter information into database tables and to retrieve and display information
from them. It is through forms that you generate the events that determine the flow of
the application.

Forms can be used to access one table at a time, or they can combine information from
a number of different tables. A form can display information that is calculated on the
fly as the form is displayed, and it can contain information (such as a label) that is not
related to any table, or purely decorative elements (such as bitmap pictures).

The following figure shows how the components of a form are related:

Forms are created and edited in the Form Designer.

What are Controls?
All the information displayed in a form is presented in controls. Controls are objects
that can display data from a database table field, the value of a C/AL expression,
bitmap pictures or static information such as a descriptive text.

Some controls are called container controls. A frame is a container control and does
not display data or information but acts as a container for a number of other controls.
The tab control is another container control. Tabs are really a number of frames or
pages stacked on top of each other. You click the tabs to switch between the pages.
Tab controls are another way to group information on a form. Tabs are useful controls
because they help avoid clutter and make it easy to move from one page to another.

Control branches consist of a parent control, and subordinate or child controls. An
example is a text box and a label. The child control inherits some properties from the
parent, and the entire branch can be moved together.

What Are Bound and Unbound Forms and Controls?
Typically, a form is bound to a database table, and used to enter information into the
table and to display information from that table. An unbound form is not related to a
table. An example of an unbound form is a form that is used as a menu from which you
can choose to run other forms or reports.

Form Description

Form Properties

Triggers

Controls Properties
Triggers
140

9.1 What Are Forms?
Controls on a form that is bound to a table are usually bound to fields in the same
table. There doesn't have to be a control for every field, nor do all controls need to be
bound to fields. Controls that are not bound to fields are unbound controls. For
example, a command button that prints the information on the form and a control that
contains a descriptive text are unbound controls. Unbound controls include controls
that display information that is calculated as the form is displayed. This information is
based on the underlying table, or on values that are entered by the user. Note that a
blank form is unbound when it is created.

What Are Form and Control Properties?
Properties are used to define how a control is placed on a form, what field it is related
to in the underlying table and what happens when information is entered into the field.
Different types of controls have different sets of properties. For example, a text box
normally displays the contents of a database field and so has more properties than a
picture box.

The form itself also has properties. For example, you can specify whether the form
should only be used for displaying information or for inserting new records or updating
existing ones. Properties are defined on the Properties window which can be edited
when the form is opened in the Form Designer.

What Are Triggers?
When C/AL functions are executed as a result of you performing certain predefined
events on either a form or a control, it is said that the event triggers the function. The
event and function together make a trigger.

Form triggers include OnOpenForm (statements that are executed when the form
opens), and OnModifyRecord (statements that are executed before the system accepts
changes that the user has made to a record. Triggers are edited in the C/AL editor that
can be opened from the Form Designer.
141

Chapter 9. Form Fundamentals
9.2 Creating Forms

Forms can be created and designed manually. Although this method gives you the
highest degree of control, it may take some time to master. Alternatively you can use a
form wizard, which is fast and easy and normally preferable when you are just
beginning to create forms. A form wizard prompts you for the minimum amount of
information needed to create a form and then does the rest of the work. After the form
has been created by the wizard, you can use the Form Designer to alter it to meet your
requirements.

You can create two kinds of form in Dynamics NAV:

• Card Forms that display one record at a time.
• Tabular forms that display several records at a time.

You can use the form wizard to create both kinds of form.

A card form

A tabular form
142

9.2 Creating Forms
Creating Forms with a Form Wizard
To create a form with the form wizard:

1 Click Tools, Object Designer (SHIFT+F12) to open the Object Designer.

2 In the Object Designer, click Form to open the Form Designer.

3 Click the New button to open the New Form window:

4 If you are creating a form that is related to a table, type the name of the table in the
Table field. Alternatively, you can click the lookup button and select the table from a
list.

5 Select the "Create a form using a wizard" option.

6 Select the type of form you want the wizard to create: a card form or a tabular form
and click OK.

Creating a Card Form
To create a card form, follow the steps that have just been described and proceed as
follows:

1 After you have chosen to use the wizard to create a card-type form and clicked OK,
the Card Form Wizard opens and will guide you through the process of creating the
form:

2 The first thing you must decide is whether the form should have tabs or if it should
be a plain form. A form with tabs is a multi-page form that allows you to switch
between the pages by clicking the tabs.
143

Chapter 9. Form Fundamentals
In this example, we will create a form with tabs that is based on the Customer table.

3 Enter a caption or name for each tab that you want and click Next.

4 You must now decide which fields from the Customer table you want to include on
your form.

When you are creating a form with tab controls, you begin by choosing the tab on
which you want the fields to appear. You can switch between the tabs by clicking
them. The tabs have the captions that you defined earlier.

5 The form that the wizard displays contains two lists: the Available Fields list, which
contains all the fields in the table and the Field Order list, which contains the fields
that you have selected.

To insert a field in the Field Order list, select it in the Available Fields list and click
>. You can insert all the fields at once by clicking >>. You can remove fields from the
Field Order list by selecting them and clicking <. You can remove them all at once
by clicking <<.

Note

The contents of the Available Fields list are the Caption properties of the fields in the
table - not the Name properties.
144

9.2 Creating Forms
6 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want the fields to appear in a different order, you can
move a field by removing it from the Field Order list and inserting it again in the
position you want.

7 To insert a small amount of extra vertical space between the controls, click
Separator. This allows you to group information together in a logical and visually
pleasing way. (Tabs provide a more powerful way of grouping information). The
separator is inserted after the field that is currently selected on the Field Order list.
You can remove a separator by selecting it and clicking <.

8 To insert a column break, click Column Break. The rules for insertion and deletion are
the same as for a separator. If you need to create three or more columns, consider
using tabs instead.

9 To see what your form looks like, click Preview.

10If you are not yet satisfied with the form, just close it and you are back in the wizard.
You can continue to adjust the form until you are satisfied with its design.
145

Chapter 9. Form Fundamentals
11When you are satisfied with the form, click Finish and the form is opened in the
Form Designer.

You can now manually adjust the form. More on this later.

For the moment, you can just close and save the form.

12Close the form. You are now asked whether or not you want to save it.

13Click Yes and the Save As window appears:

14Enter an ID number and name for the new form, and you can choose whether or not
the form will be compiled now.

You can also compile it later, by selecting the form in the Object Designer and
clicking Tools, Compile.

15When the form has been saved and compiled, you can run it. Select the form in the
Object Designer and click Run.
146

9.2 Creating Forms
Creating a Tabular Form
To create a tabular form, follow the initial steps described in the section called
"Creating Forms with a Form Wizard" on page 143. Then proceed as follows:

1 You must now decide which fields from the Customer table you want to include on
your form. The form that the wizard displays contains two lists: the Available Fields
list, which contains all the fields in the table, and the Field Order list, which contains
the fields that you have selected.

To insert a field in the Field Order list, select it in the Available Fields list and click
>. You can insert all the fields at once by clicking the >>. You can remove fields from
the Field Order list by selecting them there and clicking <. You can remove them all
at once by clicking <<.

Note

The contents of the Available Fields list are the Caption properties of the fields
available to you – not the Name properties.

2 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want the fields to appear in a different order, you can
move a field by removing it from the Field Order list and re-inserting it in the
position you want.

3 Click Preview to see what your form looks like.
147

Chapter 9. Form Fundamentals
4 When you are satisfied with the form, click Finish and the form is opened in the
Form Designer:

You can now manually adjust the form. More on this later.

For the moment you can just close and save the form.

5 Close the form. You are now asked whether or not you want to save it.

6 Click Yes to save the form. You are prompted to enter an ID number and name for
the new form, and you can choose whether or not the form will be compiled now.
You can also compile it later, by selecting the form in the Object Designer and
clicking Tools, Compile.

7 When the form has been saved and compiled, it can be run. Select the form in the
Object Designer and click Run.
148

9.2 Creating Forms
Creating Forms Without a Wizard
To create a form without using a wizard:

1 Click Tools, Object Designer (SHIFT+F12) and the Object Designer opens.

2 In the Object Designer, click Form, New and C/SIDE opens the New Form window:

If you are creating a form that is related to a table, type the name of the table in the
Table field. Alternatively, you can click the AssistButton p and select the table from a
list.

3 Select Create a blank form, and click OK.

The Form Designer opens displaying an empty form:

Chapter 10, "Designing Forms" on page 153, describes in detail how to design the
form by adding controls, changing properties and so on.

4 Close the Form Designer, and answer Yes to save the form. You are prompted to
enter an ID number and name for the new form, and you can choose whether or not
the form will be compiled now. You can also compile it later, by selecting the form in
the Object Designer and clicking Tools, Compile.
149

Chapter 9. Form Fundamentals
9.3 Saving, Compiling and Running Forms

After you have designed a form, you must save and compile it before it can be run.
Normally, you do this when you have finished designing the form. However, you may
want to save a form that is not yet finished and cannot be compiled, particularly if the
form contains C/AL code. You can also test-compile and test-run a form without
closing or saving it.

Saving and Closing a Form
A designed form is closed when the Form Designer is closed.

To save a form:

1 When you are closing a form, C/SIDE asks whether you want to save the form or not.
If it is a new form (a form that has not been saved before), you will have to give it an
ID and a name. The ID must be unique and follow the rules for numbering objects –
your local Microsoft Certified Business Solutions Partner will provide you with this
information.

If you enter ID and Name as form properties, these values will be used, and you will
not be prompted for an ID and a name when you close the form.

2 The Compiled option field is selected by default (a check mark). If your form is not
ready to be compiled, click in the field to remove the check mark.

3 Click OK to save the form.

You can save a form without closing it by clicking File, Save or Save As... You can also
use Save As... to give a form a new name.

Compiling a Form
Forms, like the other objects in C/SIDE, must be compiled before they can be run. As
described earlier, you can compile a form whenever you save it.

While you are designing a form, you may want to test-compile it to find possible errors.
This is particularly useful when the form contains C/AL code in triggers. You can test-
compile a form when you are designing it by clicking Tools, Compile.

Running a Form
In a finished application, your forms are incorporated into menus or else they are called
from other forms. However, when you are designing forms, you will often want to run
them before they are integrated into an application.

You can run a form from the list of forms in the Object Designer by selecting it and
clicking Run. Forms can also be run from inside the Form Designer by clicking File, Run.
150

Chapter 10

Designing Forms

This chapter describes how to design forms by adding
controls and by changing the properties of forms and
controls.

· Form and Control Properties

· Types of Controls

· Adding Controls

· Selecting, Moving and Adjusting Controls

· Tools for Customizing Controls

· Setting Control Properties

· Container Controls

· How to Use Controls in Applications

Chapter 10. Designing Forms
10.1 Form and Control Properties

Remember that properties are a system-wide feature and every application object has
some properties. You edit the properties of forms and controls by opening the
Properties window in the Form Designer (click View, Properties or SHIFT+F4). As you
select a form or control, the Properties window displays the properties of the selected
object. The title bar of the Properties window shows which kind of object (form, text
box, label, and so on) is currently selected. The first line in the window shows the ID of
the object.

Each line in the Properties window contains a property which you can set in the Value
field. When you leave the field, press ENTER or use the arrow keys, the property is
updated. If your entry contains an error (for example, if you accidentally change the ID
of one control to be the same as that of another), the update is not accepted.

The default values are displayed in angle brackets <>. If a property has a default value,
you can reset it by deleting the current value and then moving out of the field. Some
properties do not have default values – mainly those that describe the position of the
control within the form. These properties are updated by C/SIDE when the control is
moved.

How Properties Are Inherited
Controls that have a direct relationship to table fields inherit the settings of those
properties that are common to both the field and the control. You can change the
settings of these properties for the control, but you cannot overrule the settings of the
field properties that concern data validation. For example, if the field property that
determines which characters the user can enter is set to lowercase only, you cannot use
the properties of the control to reset it to also accept uppercase characters. You can
narrow the accepted range of characters but not broaden it. On the other hand, you
can change properties like the caption because this property has nothing to do with
data validation.

When you design an application, you must consider whether these common properties
should be specified at field or control level. The advantage of using the lowest level
(the field level) is that it ensures consistency because whenever the field is used as the
data source of a control, these settings are used as defaults.
152

10.1 Form and Control Properties
Form Properties
The following table briefly describes the some of the more important form properties.
There is a description of all the properties in the C/SIDE Reference Guide online Help.
You can get context-sensitive Help by opening the form's Properties window, placing
the cursor on a property, and pressing F1.

General Properties for Controls
The following table briefly describes those properties that are common to several types
of controls. There is a description of all the properties in the C/SIDE Reference Guide

Property Name Use this property to...

ID set the numeric ID of the object.
This property can also be set when you save a form. The ID must be unique
among forms. Your Microsoft Certified Business Solutions Partner can tell
you the number range that you can use.

Name give the form a descriptive name.
No two forms can have the same name.

Minimizable specify whether you can minimize the form window.

Maximizable specify whether you can maximize the form window.

Sizeable specify whether you can resize the form window.

SavePosAndSize specify whether information about the user-made changes to the size and
placement of a form window are saved.
If it is set to Yes, this information is saved, and the next time the window is
opened, these values are used. Otherwise, the designed values are used.

Editable specify whether you are allowed to edit controls in the form. If it is set to
No, controls may not be edited, even when their individual Editable
properties are set to Yes.

InsertAllowed specify whether the form can be used to insert records in the database.

ModifyAllowed specify whether the form can be used to modify records in the database.

DeleteAllowed specify whether the form can be used to delete records from the database.

CalcFields specify a list of FlowFields that you want the system to calculate when the
form is updated.
If the FlowField is a direct source expression, it is automatically calculated.
However, if it is indirect (part of an expression) it is not.

UpdateOnActivate specify whether you want the system to update the form when it is
activated.

SourceTable specify the source table of the form.
Normally, you specify the table when you first create the form. If you have
created a form without an underlying table, you can enter a table name
here to bind the form to a table.

SourceTableView create a view (what you can see) of the source table for this form. You can
specify the key, sorting order and filter that the system will use.

SaveTableView specify whether the system will save information about which record the
user is viewing when the form is closed, the sorting order and the current
filter, and then reapply this information when the form is opened again.
153

Chapter 10. Designing Forms
online Help. You can get context-sensitive Help for a property by opening the
Properties window for a form, selecting a control, placing the cursor on a property and
pressing F1.

Property Name Use This Property to...

ID set the numeric ID of the control.
The system assigns a sequential number by default. If you delete a control,
and then add another in its place, you may want to give the newly created
control the number of the one you deleted. The ID must be unique among
controls and menu items on the form.

Name give the control a descriptive name.

Caption specify the text that the system displays for this control.

HorzGlue to anchor a control horizontally on the form.
You can choose Left, Right or Both. If you choose Both, the control is
resized when the form is resized.

VertGlue to anchor a control vertically on the form.
You can choose Top, Bottom or Both. If you choose Both, the control is
resized when the form is resized.

Visible specify whether the control is visible when the form is opened.
This property can be changed from C/AL at runtime. Notice that if the
control is a child control and the parent has Visible = No, the child will not
be visible, even if it has Visible = Yes.

ParentControl specify the ID of a parent control, thereby turning the control into a child.
154

10.2 Types of Controls
10.2 Types of Controls

This section contains a brief overview of all the controls that can be added to a form.
The following list is structured according to the broad categories into which controls
can be grouped.

Static controls
Static controls are used to contain and display descriptive or graphical information. You
cannot change the contents of static controls at run time.

The static controls are:

Label A label is used to display text, most commonly the caption of another control.
In this situation the label is normally (and conveniently) a child of the other control, but
labels can also be used as stand-alone controls.

Image An image control is used for displaying a picture.

Shape A shape is a graphical element (line, circle, rectangle and so on).

Data controls
Data controls display the value of a C/AL expression, for example the value of a table
field or a variable or a "real" expression. (The simplest expression is just the name of a
table field or a variable.) The valid combinations of data control and data type are:

Data controls must have a relation to data, defined as their SourceExpr property.

Containers
Container controls are used to group other controls together. Some properties of the
container overrule the same property in the contained controls. If the container is not
editable, then none of the contained controls can be edited (even if they individually
have the Editable property set to True).

Frame A frame is simply a rectangle into which other controls can be “dropped”. In
the Form Designer, the frame and the controls that it contains can be moved together.
A frame can have different border styles and colors than the form that it is part of.

Tab Control A form can be thought of as a book that contains several pages, or
frames. Only one of these pages is visible at a time. You can switch between the pages
by clicking on the tabs.

Control Valid data types

Check Box Booleans and BLOBs

Option Button All, except BLOBs

Text Box All

Picture Box Boolean, option, integer and BLOBs

Indicator Integer, decimal, date, time
155

Chapter 10. Designing Forms
Data Containers
Table Box A special kind of container that holds repeated data controls and is used
to create columnar tables. Each data control contained by the table box constitutes one
column for which a static control is used as a heading. The rows arise from vertically
repeating each data control. If the table box displays records from a table, each row
displays one record.

Other Controls
Command Button A command button is not related to data. It performs an action
when it is clicked, or when ENTER or the spacebar is pressed while the button has the
focus.

Menu Button A menu button can be clicked just like a command button, but it does
not perform an action. When you click it, a menu opens containing a number of menu
items that you can choose.

Menu Item The lines in a menu that can be chosen are called menu items. Each menu
item resembles a command button because it can perform an action when you click it.

Subform A subform control is used to display a second form in a control on a form (a
main form). This allows the main form to show data from two different tables. For
example, the main form could be a card form and show records from a customer table,
while the subform could be a tabular form and show details about any purchases the
customer has made.
156

10.3 Adding Controls
10.3 Adding Controls

This section consists of a few examples that show how to add controls without using
the form wizards.

The Toolbox
You use the Toolbox to insert controls. To open the toolbox, click View, Toolbox or click
the Toolbox button on the toolbar. You select a specific tool by clicking the
corresponding icon in the toolbox.

Note that some of these tools are not implemented in the current version of C/SIDE,
but that the icons are already present – they will, however, always appear disabled.

You use the Pointer tool to select controls on a form in the designer. When you select
any of the other tools, the cursor changes from a selection tool to an insertion tool.

Normally, after you have inserted a control, you must select the control again in the
toolbox before inserting the next control. However, the Lock tool maintains the current
control selection and you can continue inserting controls of the same type without
having to select the control again in the toolbox.

If the Add Label tool is also selected, all the controls that you add to the form are given
a label when you insert them.

Adding a Text Box
If the text boxes that you want to add to the form are related to database table fields,
the easiest way to add them is to use the Field Menu. The Field Menu is a window that
lists all the fields in the table that has been defined as the Source Table for the form.
You can open the Field Menu in the Form Designer by clicking View, Field Menu.

To add a text box that has a specific field in the table as its SourceExpr (that is, has this
field as its underlying table field) to the form:

1 Open the Form Designer.

2 Create a blank form based on the Customer table.

3 Click View, Field Menu to open the Field Menu window:

Text Box

Option Button

Menu Button

Frame

Picture Box

Indicator

Subform

(not in use)

Add Label

Pointer

Check Box

Command Button

(not in use)

Image

Shape

Tab Control

Table Box

Lock

(not in use)

Label
157

Chapter 10. Designing Forms
4 In the Field Menu window, select the field or fields. The Field field contains the
Name property, and the Caption field contains the Caption property. For more
information about these properties, see Chapter 22, “MenuSuite Objects“.

5 In the Field Menu window, select the field (or fields) that you want to place on the
form. The Field field contains the Name property, and the Caption field contains
the Caption property. The Data Type field tells you the data type of the field.

Move the cursor into the design area and it changes into the Control Insertion
cursor. You do not have to drag and drop; just select the field(s) and move the cursor
over the form designer.

6 In the Form Designer, click once to activate the designer and click again to insert the
text box(es). The text box is inserted below the point where you clicked. You can
move it later if you want.

The text box that is created has the default size. You can click and drag to create a
text box with a different size.

If you selected more than one field, the text boxes are inserted and aligned in a column
below the mouse position. They are not linked together and can be moved apart later.

Each text box has these characteristics:

• It has the table field as its SourceExpr.
• The default settings for the Name and Caption properties are the same as the setting

for the Name property of the underlying table field.
• In general, every property that is both a field property and a text box property has

the value of the field property in the underlying table as its default value.
• The text box has a label with a caption that defaults to the caption of the text box.

The advantage of using the Field Menu to add text boxes with labels is that you are
effortlessly assured that both the naming and the properties are consistent.

If the data type of the field is anything but Boolean, a text box is created, but if the data
type is Boolean, a check box is created.

Adding a Text Box without Using the Field Menu
Although the easiest way to add a text box is by using the Field Menu, you can add text
boxes without using the menu. This is the method you use when you want to add a
158

10.3 Adding Controls
calculated text box, that is, a text box that is used to display a calculated value. It is also
possible to add an unbound text box and then, later on, bind it to a table field.

To add an unbound text box:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Text Box tool.

3 Move the cursor into the design area.

4 Click to add a text box of the default size, or click and drag to create a text box with
a different size.

Now you have an unbound text box control on the form. Notice that no characteristics
were inherited, and that the text box has no label.

Later you will learn how to change the properties of a control including how to bind
the text box to a table field and add a label. You will also learn how to use a text box to
display a value that is calculated on the fly.

Creating Labels That Display Descriptive Text
You can add a label that is not the child of another control to a form. You can do this,
for example, if you want to have descriptive text on the form. This could be instructions
about using the form, or other static information not related to any database table
field.

To add a label:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Label tool.

3 Move the cursor into the design area.

4 Click to create a label of the default size, or click and drag to create a label of a
different size.

As the label is not part of a control branch, it is given a default name and caption
(like Control4). You can change the name and the caption on the Properties
window for the label (see "Changing the Properties of a Control" on page 165).
159

Chapter 10. Designing Forms
10.4 Selecting, Moving and Adjusting Controls

This section describes how to select and move controls, and how to adjust controls by
aligning and sizing them.

Selecting Controls
Before you can move or adjust a control, you must select it. As some operations can be
applied to only one control at a time and others to a group of controls, controls can be
selected both individually and as groups.

You select a control by clicking on it. To make it easier to see what the mouse cursor is
pointing at, the appearance of the cursor changes as it is moved around the design
area. The default appearance is a cross, which means that the cursor is not currently
pointing at any control. As soon as the cursor points at a control, it changes into a
selection cursor. Clicking the mouse selects the control, which is then surrounded by a
box with sizing handles.

Multiple Selections
A multiple selection is a group of controls that are all selected. You make a multiple
selection, for example, in order to align all the controls in the selection (how to actually
align the controls is described later).

Adding to a Selection
When one control has been selected, you can add other controls to the selection by
holding down the CTRL key and then selecting the other controls. As you select more
controls, a box appear around the complete selection and each control in the selection
is marked by a circle in the upper left corner of its own bounding box.
160

10.4 Selecting, Moving and Adjusting Controls
Marquee Selection
Another way to make a multiple selection is to use marquee selection. When the mouse
cursor is in the design area but not pointing at anything (appears as a cross), press the
left mouse button and hold it down. Then drag the mouse and a rectangle appears.
This is called a marquee.

As the rectangle expands, any control that it overlaps, completely or partially, is
selected; and a circle appears in the upper left corner of its bounding box. Release the
mouse button when you have selected all the controls that want.

Controls can be added to the selection individually (as described earlier), and a
marquee selection can be added to an existing selection by holding down the CTRL key
while you carry out the marquee selection.

Note

There is an option that determines how marquee selection works. Click Tools, Options.
In the Options window, the Marquee Full Selection option can be set to Yes or No. If
the option is set to No, the marquee selection works as described earlier. If it is set to
Yes, a control is only selected if the marquee overlaps the control completely – not just
partially.

Selection and Container Controls
When you select a container control, all the controls that it contains are selected, even
if they are not marked as such by individual bounding boxes. Beware that a contained
control can be moved so that it is only partly inside the container. However, it is
considered part of the control as long as any part of it overlaps the container. To select
such a control, you must click in the part that is still inside the container.

Selection and Control Branches
A control branch consists of the control itself and one or more child (subordinate)
controls. An example is a text box with a label. Both are controls – the text box holding
information that can change during program execution and the label holding static
information (usually a caption for the text box), changeable only during form design.
The label is said to be a child of the text box.
161

Chapter 10. Designing Forms
When a control branch, such as a text box with a label, is selected, the control itself is
displayed in a bounding box with sizing handles, as usual. The child controls that are
part of the control branch are marked by a box with a circle in the upper left corner,
and the whole branch is surrounded by a dotted emphasis frame. If you click on the
emphasis frame (the cursor changes into a selection cursor as it touches the frame), the
child controls are added to the selection; this turns the selection into a multiple
selection that can be moved as a whole.

Moving Controls
When the selection cursor appears, you can move the control below it by pressing the
left mouse button and holding it down while you drag the control to the desired
position. The control is dropped when you release the mouse button.

Moving Selected Controls
Controls also can be moved after they have been selected. To move a selected control,
move the mouse cursor towards it. When the cursor touches the border of the control,
it looks like a hand. Press and hold down the left mouse button, drag the control to the
desired position, and then release the mouse button.

Multiple selections are moved as a whole and their relative positions within the
selection are not changed.

Aligning Controls
If you created a form without using a wizard – or if you did use a wizard but rearranged
some controls afterwards – you may want to align the controls more precisely.

There are two methods for aligning controls easily and accurately in C/SIDE:

1 You can turn on the Snap to Grid option by clicking Format, Snap to Grid. Now when
you move a control you will notice that it doesn't move smoothly, but rather in
small, fixed increments. The dots in the design area represent some of the actual grid
points that the controls snap to when they are moved.

Hint: the distance between the grid points are properties (HorzGrid and VertGrid) of
the form. The unit is 1/100 millimeters.
162

10.4 Selecting, Moving and Adjusting Controls
2 To align several controls, make a multiple selection of the controls and click Format,
Align. In the submenu that appears, select one of the four ways to align the controls.

If, for example, the controls are in a column, you will want to align them vertically,
either to the left or to the right. Select Left or Right to do this. Correspondingly, a
row of controls can be top or bottom aligned. Beware however that if, for example,
you inadvertently choose to top align a column of controls the system will indeed do
just this and will place all the controls on top of each other.

Sizing and Resizing Controls
When the wizard adds controls to a form, these controls are sized evenly according to a
default scheme. If you move the controls around, the sizes that the wizard assigned
may no longer be appropriate. Other situations where you will want to change the size
of a control are if you change the font size, or if you don’t want to display all the
information from a very large table field, but only the first part. You can only resize one
control at a time.

To resize a control:

1 Select the control. It is now surrounded by a bounding box with sizing handles.

2 Select a sizing handle and the cursor turns into a sizing cursor.

3 Click the left mouse button and drag the control until it has the size you want. If
Snap to Grid is turned on, the sizing takes place in fixed increments.

Sizing Container Controls
If you have created a container control, you can size the contained controls individually
in the usual manner. The containing control – for example, the frame – can be sized like
any other control. When a containing control is sized, the contained controls are not
affected, that is, neither their size nor their position changes.

When you enlarge a container, any control that becomes completely overlapped by it
will automatically be 'adopted' as a child that is contained by the container control.

You should also be aware that you can reduce the size of a container control so that a
control that it contains seems to be outside the container. However, this control is still
considered to be part of the container. If no part of the control is inside the container
control, it cannot be selected. The remedy for this is to enlarge the container so that all
the contained controls are inside it.
163

Chapter 10. Designing Forms
10.5 Tools for Customizing Controls

In addition to the Properties window, you can use two special tools to set some of the
properties of controls:

• Color tool, for selecting color properties and border styles.
• Font tool, for setting font properties.

Using the Color Tool
To open the Color tool, click View, Color:

When a control with color properties is selected, you can pick the colors for foreground
(text), background and border by clicking in the palette. The corresponding properties
are ForeColor, BackColor and BorderColor.

The Background and Border check boxes are used to determine whether or not the
background color and the border color are displayed. The corresponding properties
are BackTransparent and Border (if these options are off, a background or border color
has no effect).

If the control has a border, the nine buttons at the bottom can be used to select the
style and width of the border.

Using the Font Tool
To open the Font tool, click View, Font. The tool looks like this:

When a control that can display text is selected, you can use this tool to set the font
properties. You can enter the font name, the font size, attributes (bold, italic and
underline) and the horizontal alignment of the text (left, center, right and general –
general means that the text is left aligned and the numbers are right aligned).
164

10.6 Setting Control Properties
10.6 Setting Control Properties

This section gives some examples of how to change the properties of a control, and
indicates some of the typical situations where this will be necessary.

Changing the Properties of a Control
If you have added controls without using the form wizards, you often need to change
some of the properties of these controls. Even if you did use a wizard, you may want to
change some of the properties to meet specific requirements that the wizards cannot
consider.

Changing the Name and Caption of a Control
Every control has an ID and a Name. Controls that display data also have a SourceExpr
(source expression) property which is a C/AL expression. It can just be the name of a
table field name or it can be a complex expression, perhaps with a field as an operand.

When you use a form wizard or the Field Menu to create a text box that has a direct
relationship to a table field, the Name and Caption are set by default to the name of
the table field (unless the table field has a Caption, in which case this Caption is used).
The label has a Caption derived from the Caption of the parent control (the text box).
You can supply a Caption in either place if you want to have a different, perhaps more
descriptive, text than the field name as a caption.

Notice the following dependencies:

• If you change the Caption property of the text box, the Caption property of the label
is set to this value as a default (displayed in angle brackets). If you change the text
box Caption property again, the Caption property of the label is also changed again.

• If you change the Caption property of the label directly, the value you enter is
displayed without angle brackets, signifying that it is no longer a default value. Now
if you change the property of the text box again, the value here is not be updated.

Changing an Unbound Control into a Bound Control
An unbound text box, or other data control, can be easily changed to a bound control.
You must simply change the SourceExpr to the one that you want.

If it is the name of a field in the database table, the values for Name and Caption
automatically default to the standard values of the bound control, that is, they default
to the name of the table field. This will not automatically add a label to the text box.

If you want to change the source expression so that it refers to a field from another
table, you must enter a more complex C/AL expression.

Adding a Label to a Text Box
If you have created a bound text box by changing the SourceExpr of an unbound text
box, the bound text box does not automatically get an attached label. You add a label
by adding a label control to the form and then changing the ParentControl property of
the label from the default (undefined) to the ID of the text box. You can see the ID of
the text box in the first line of the Properties window for the text box.

The control branch resulting from this operation can be selected and moved just like
any other control.
165

Chapter 10. Designing Forms
Display Properties
Controls that you add to a form – either by using a wizard or manually – have a default
set of properties that define how the control itself and the data it displays are
formatted. While this ensures a consistent visual design throughout your applications,
it cannot cover all your needs. You may therefore have to change some properties that
affect the way your forms and their controls are displayed.

Controlling the Display of Numbers
This is a short description of the properties that determine the way numbers are
displayed. For a full description of these properties, see the C/SIDE Reference Guide
online Help.

DecimalPlaces This property (that specifies both the minimum and maximum
allowed values) determines how many decimals are displayed, as well as how many
decimal places can or must be entered. A typical situation where you would use this
property is when amounts are stored in the database with 5 decimal places for high
precision but you only want to see the customary number of decimal places for the
currency, for example 2. The table field would then have the DecimalPlaces property
set to 2:5, while the + property of the text box is set to 2:2.

BlankNumbers You can choose from an option list whether a range of numbers will
be displayed or blanked.

BlankZero The default is No. If you change it to Yes, zero values and Booleans that
would have been displayed as a No are blanked out.

Divisor The default is Undefined. If a number is entered, numeric values are divided
by this number when they are displayed. Any remainder is discarded. You could, for
example, use the Divisor property to display only the thousands part of a number by
entering 1000 (then 16400 and 16800 would each be displayed as 16).

Formatting Data Display
This is a short description of the properties that determine the way data is formatted.
For a full description of these properties, see the C/SIDE Reference Guide online Help.

Format This property defines how the system formats the SourceExpr of a text box.
For each data type, there is a default. There is also a set of standard formats that you
can select. You can also build your own formats if you need to.

HorzAlign and VertAlign These properties define how data in a text box or a
caption on a label is aligned horizontally and vertically.

MultiLine This property determines whether or not labels and text boxes can contain
multiple lines of text. The default is No with one exception: the label of a column in a
table box will have this property set to Yes. For more details, see the subsection
"Displaying More Than One Line of Text" on page 171.

PadChar This property specifies the character that should be used to pad a string. The
character will be added to the left or right, or both, depending upon the text alignment
defined by the HorzAlign property.

LeaderDots This property specifies whether or not there are leading dots before the
data. The dots are placed according to the data's horizontal alignment. If the data is
left aligned, the dots are placed on the right and if it is right aligned, dots are placed on
166

10.6 Setting Control Properties
the left. If centered, there are dots both before and after the data. If this property is set
to Yes, the PadChar setting is overruled.

Properties That Control Input
This group of properties are used to control user input, that is, restrict user input to
certain values or a certain length.

Numeric Restricts input to numeric values only if it is set to Yes.

MinValue, MaxValue Sets a minimum or maximum value that you can enter.

ValuesAllowed Specifies the values that you are allowed to enter. Enter the values
separated by semicolons, like 1;7;4711 or a;b;c.

CharAllowed Specifies the characters that you can enter. You can use a range, for
example AZ, to limit entry to uppercase characters only, or several ranges, for example
amot, specifies two ranges: a to m and o to t.

NotBlank Specifies whether or not an entry can be blank. If this property is set to Yes,
an entry that consists of nothing, one blank space or several blank spaces is not
accepted. A blank can be part of string that contains other characters.

MaxLength Specifies the maximum number of characters that can be entered in a
text box.

AutoEnter If set to Yes, the system accepts your entry when the maximum number of
characters allowed has been entered into a table box, and it will then move the focus to
the next control – that is, you do not have to press ENTER.

PasswordText Specifies whether or not your input is displayed as text. If this property
is set to Yes, your input is not displayed but shown as asterisks ******.

Assisting the User
This group of properties is used to give some help to the user.

ToolTip This property allows you to assist the user by displaying text that describes a
control.

If you enter a text for this property, it is displayed in a small pop-up window when the
user holds the cursor over the control for a short while. The text is supposed to be a
short, perhaps just one word, description of what the control is used for.

DataCaptionField, DataCaptionExpr This property is used to control the label that is
displayed on the title bar of the form window. This is a static caption, usually the name
of the underlying table.

By using DataCaptionField (either at table or form level), you can select fields from the
record whose contents are displayed (and updated) in the caption bar as you page
through the table. With DataCaptionExpr (form only) you can create a C/AL expression
to be displayed in the caption bar. The expression is reevaluated when you select a new
record or the present record is changed. For more information, see the C/SIDE
Reference Guide online Help.
167

Chapter 10. Designing Forms
Note

If the Status Bar option (click Tools, Options) is set to Yes, the caption of text boxes and
check boxes is displayed in the status bar together with the current data contents of
the control (if any) when the control gets the focus.
168

10.7 Container Controls
10.7 Container Controls

As explained earlier containers are used to gather controls together in logical groups.
This can help make the application more intuitive for the user and thereby easier to
use. They can also make it easier for the designer to maintain.

Using a Frame to Contain Controls
A frame is used to contain other controls. When controls are contained in a frame, you
can perform some operations on all these controls during design. For example, the
controls are all moved when the frame is moved, with their relative positions intact and
if the frame is invisible all the contained controls are also invisible.

A frame can have a border that can be raised or sunken. This feature can be used to
distinguish a group of controls (such as a group of option buttons) visually.

To create a frame with contained controls:

1 Open the form in the Form Designer.

2 Select the Frame tool; then click and drag in the design area to create a frame.

3 Create the controls to be contained by the frame in the usual way, placing them
inside the frame as you add them to the form.

4 Set the properties of the frame to suit your purpose.

A common change is to stop caption display by setting the ShowCaption property to
No. By default, the border style is Raised. If the frame's purpose is not to distinguish the
contained controls, set the Border property to No, so that no border is displayed.

When an existing control is dragged inside a frame and dropped, it will be contained in
the frame. When a control is dragged outside a frame, it is no longer considered to be
contained by the frame. If a container is resized and then overlaps existing controls
completely, these controls will be contained by the frame. If a frame is deleted, all the
contained controls are also deleted.

Creating a Tab Control
A tab control is useful when you are designing a form that is based on a table with
many fields. Instead of creating a large form cluttered with controls, you can group
controls together on pages that the user can bring to the front by clicking the tabs.

You can use a form wizard to create a form with a tab control.

To create a tab control manually:

1 Open the form in the Form Designer.

2 Select the Tab Control tool and click and drag in the design area to create a tab
control.

3 Open the Properties window for the tab control, and create the pages you need by
entering a name for each page as a comma-separated list in the PageNames
property. The names are used as captions on the tabs.

The tabs are created while you are in the Form Designer. You can select pages by
clicking the tabs.
169

Chapter 10. Designing Forms
Add controls on the pages. You can think of each page in a tab control as a frame and
add controls as you would in a frame.

Creating a Table Box
A table box is useful when you need to display many records from a database table at
the same time. A table box contains columns and rows, and you can move through the
records, either by using the vertical scroll bars or by using the arrow keys or PAGEUP
and PAGEDOWN. If the form is too narrow to display all the columns, a horizontal scroll
bar is automatically added to the control.

You can use a form wizard to create a form with a table box.

To create a table box manually:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the table box tool.

3 Click and drag in the design area to create a table box.

4 If the form is not related to a table, you can now establish a relation by setting the
SourceTable property of the form to the name of the table.

5 Click View, Field Menu to open the Field Menu window.

6 Select the fields you want in the table box from the Field Menu and click twice inside
the table box. Once to activate the Form Designer and once to insert the fields. A
column is added for each field, and each row will display a record from the table. A
label, derived in the same way as a label for any text box, is added as a column
heading.
170

10.8 How to Use Controls in Applications
10.8 How to Use Controls in Applications

This section describes some more of the methods that you can use to control the way
data is displayed in your applications.

Displaying More Than One Line of Text
If a database table contains very large fields, lengthy descriptive texts for example,
using the standard one-line text box is not a very good way to present this information.
Instead, you can customize a text box to wrap text into multiple lines.

To create a multiline text box:

1 Open the form in the Form Designer.

2 Select the text box in question and enlarge it vertically by resizing.

3 Open the Properties window for the text box (SHIFT+F4) and set the value of the
MultiLine property to Yes.

4 Run the form. Entering or editing text will still take place on one line that scrolls
horizontally. When the focus is not on the text box, the contents of the field will be
formatted in multiple lines. Automatic line breaks occur only after a space character,
and the user can insert line breaks ("hard newlines") by embedding a backslash
character ("\") in a text string. (To display a backslash, enter "\\".)

5 You may have to experiment with the vertical resizing of the text box to find the size
that suits your purpose best.

Displaying a Calculated Value
A control can be used to display a value that is not stored in the database but
calculated as the form is displayed. One situation where this could be useful is when all
the information needed for the calculation is actually stored in the database, and –
conforming to the rules for a relational database system – the calculated value is not
stored separately. However, the users of the application do sometimes need this value.
Adding a calculated control can give this information, without violating the rules for
good database design.

To display a calculated value:

1 Open the form in the Form Designer.

2 Select a tool that inserts an appropriate data control (check box, text box, indicator)
in the Tool Box.

3 Click twice in the design area to add the control.

4 Open the Properties window for the control. Type the expression you want as the
SourceExpr property.

Example

You have designed a table with a field that contains the Unit Price of an item, and another field that
contains the Employee Discount Rate. On the form, you want to see the price that an employee
actually has to pay. Add an unbound text box and enter as the SourceExpr:
171

Chapter 10. Designing Forms
"Unit Price" - ("Unit Price" * "Employee Discount Rate" / 100)

Presenting a Set of Options
A recurring task in application programming is to present the user with a fixed set of
options to choose from. For example, in a program where the user frequently has to
enter the title of a contact, it could be a list of titles.

In C/SIDE, you can present these options in several ways. The following sections
describe two different approaches.

Creating a Drop-Down List of Options
The list of options can be presented as a drop-down text box:

Before you create the drop-down list, you must create the form.

1 Open the Object Designer and click Form, New to open the New Form window:

2 Create a Card-Type Form based on the Contact table and click OK.
172

10.8 How to Use Controls in Applications
3 In the Card-TypeForm Wizard window click the No, I want a plain form option
and click Next.

4 Add the following fields to the form:

5 Click finish and in the Form Designer window, expand the form and the container
control.
173

Chapter 10. Designing Forms
6 Add a text box and a label:

Now you have created the basic form. The next step is to create the drop-down option
list.

1 Select the text box that you just created and open the Properties window
(SHIFT+F4).

2 In the Caption field enter Organizational Level.

The field or variable that is the SourceExpr of the control must be of the Option data
type, and the options must have been entered as the OptionString property of the
field or variable. In this example you will use a variable.

3 Click View, C/AL Globals to Open the C/AL Globals window.

4 Create a variable called Organizational Level of data type Option and open the
Properties window (SHIFT+F4) for this variable.

5 In the Value field OptionString property, enter the following list: Chief Executive
Officer,Chief Financial Officer, Junior Manager,Manager,Salaried Employee,Senior
Manager. These are the values that are currently available in the the
Organizational Levels table.

6 Open the Properties window (SHIFT+F4) of the text box and bind it to the variable
by clicking the AssistButton k in the Value field of the SourceExpr property to open
the C/AL Symbol Menu window:
174

10.8 How to Use Controls in Applications
7 Make sure that the Paste Arguments option is active, select Organizational Level
and click OK.

8 Save and compile the form.

When you run the form, you can open the list by clicking the AssistButton h in the text
box.

If the option text box is built on a field in the table that the form is based on, you can
use the Field Menu window to insert the text box.

Note

You can only enter options that have been defined in the Properties window of the
field or variable. The first option is displayed in the text box. If the OptionString
property has a blank as the first option, the text box is blank. This does not mean that
you can enter options that are not in the OptionString.
In the OptionString property of the control, you can select a subset of the options
already defined for the field – you cannot add options.

Creating an Option Button Group
Another way of presenting a set of options is as an option button group. The
functionality is the same as that provided by a drop-down list, but the visual
presentation is, of course, quite different. An option button group looks like this:

The advantage of using an option button group is that the user of the application can
see all the available options and the currently chosen option at a glance. The
disadvantage is that an option button group takes up more space on the form than a
drop-down text box does.

In this example, you add an option button group to the form that you created in the
previous example.

1 Open the form you created earlier in the Form Designer.

2 Delete the the text box with the drop down list.
175

Chapter 10. Designing Forms
3 Open the toolbox and add a frame to the form:

4 Open the Properties window and enter Organizational Level as the Caption.

5 Set the BorderStyle property to BumpUp.

6 In the frame that you have just inserted add six control buttons, one for each of the
options available in the the Organizational Levels table:

7 In the Properties window of each option button, enter "Organizational Level Code"
as the value in the SourceExpr field. Remember to enter the quotation marks.

8 In the Caption field, enter the six values that are currently available in the
Organizational Level Code table:

9 In the OptionValue property for each button, enter the corresponding value from
the Organizational Level Code table.
176

10.8 How to Use Controls in Applications
10Save and compile the form.

The final form shouold now look something like the picture shown at the beginning of
this section.

The OptionValue property of each button has the same value as its caption.

Because the option buttons have the same source expression, only one of them can be
chosen at a time. When you choose an option by clicking on the button, any
previously-chosen button will be marked as not chosen.

Using a Check Box to Display Booleans
A check box control is a handy way of displaying data of type Boolean. In a text box,
boolean values will be shown as Yes and No. In a check box, Yes is displayed as a check
mark, while No is displayed as a blank.

To add a check box:

1 Open the form in the Form Designer.

2 If the check box will have a direct relationship to a table field, select the field in the
Field Menu. Otherwise proceed to create an unbound check box.

3 If you want a label attached to the check box, click the Add Label tool (check boxes
do not by default have labels).

4 Choose the Check Box tool; then click in the design area to create the check box (if
you have selected a field of type Boolean from the Field Menu, you only have to
click in the design area).

5 If the check box is unbound, bind it to the variable now by entering the name of the
variable as the SourceExpr of the text box.
177

Chapter 10. Designing Forms
Creating and Using Command Buttons
Command buttons are useful for a number of purposes. If you have used a wizard to
create forms, you will have noticed that a Help button has been added to all forms.
Other common uses are Yes and No buttons in contexts where the user must decide
whether a certain task will be performed or not. Still another use is to launch another
form, or even another program.

To add a command button:

1 Open the form in the Form Designer.

2 Select the Command Button tool and click in the design area to add the command
button.

This will create the command button. The next step is to define the action associated
with the button.

3 Open the Properties window for the command button. The PushAction property
specifies what happens when the command button is pushed.

4 Open the drop-down list in the PushAction property value field. You will see this list
of possible actions:

5 A common action would be to run another form. To make this command button run
another form select RunObject in the drop-down list.

6 In the RunObject property, open the look-up table of system objects, and choose the
object you want to run when the command button is pushed.

Note

Not all settings of the PushAction property require additional information. Some do,
such as RunSystem, while others, such as Yes or No, do not.

While this method of adding an action to a command button is easy to use, it does
have some limitations. For example, you cannot pass parameters. A more powerful
method is to use the OnPush trigger for the button. Triggers are explored in Chapter
11, "Extending the Functionality of Your Forms".
178

10.8 How to Use Controls in Applications
Containing Controls Within a Frame
A frame is used for containing other controls. When controls are contained in a frame,
you can perform some operations on these controls as a whole: during design, they are
moved when the frame is moved, with their relative positions intact; if the frame is
invisible, all the contained controls are invisible too.

A frame can have a border that can be raised or sunken. This feature can be used to
distinguish a group of controls (such as a group of option buttons) visually.

To create a frame with contained controls:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Frame tool.

3 Click and drag in the design area to create a frame.

4 Create the controls you want to be contained by the frame in the usual way, placing
them inside the frame just as you would add them to the form.

5 Set the properties of the frame to suit your purpose.

A common change is to prevent the caption form being displayed by setting the
ShowCaption property to No. By default, the border style is Raised. If the purpose of the
frame is not to distinguish the contained controls, you can set the Border property to
No, meaning that no border will be displayed.

When you drag an existing control inside a frame and drop it, it is contained by the
frame. When a control is dragged outside a frame, it is no longer contained by the
frame.

If a container is resized and overlaps some existing controls completely, these controls
become contained.

If a frame is deleted, all the controls that it contained are deleted. For more information
about resizing controls, see "Sizing and Resizing Controls" on page 163.

Adding Shapes and Pictures
You can add graphical elements such as shapes and bitmap pictures to forms. These
can be used to emphasize information, by adding a shape that makes some controls
stand out – or for purely decorative purposes.
179

Chapter 10. Designing Forms
Using Shapes
The ShapeStyle property lets you choose from a number of shapes: rectangle, rounded
rectangle, oval, among others. You can adjust the width and color of the lines by
changing the BorderWidth and BorderColor properties.

To create a shape:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Shape tool.

3 Click and drag in the design area to specify the size of the shape that you want to
add. You can adjust it again later.

4 In the Properties window for the shape, click ShapeStyle and select a shape from
the drop down list.

5 Use the BorderWidth and BorderColor properties to further refine the design of the
shape that you have added to the form.

Adding a Static Picture as an Image
The simple way to add a bitmap picture to a form is to add it as a control of type
image.

To add an image:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Image tool.

3 Click and drag in the design area to create an image control.

4 Open the Properties window of the image control, and enter the path and name of
the bitmap file in the value field of the Bitmap property.

The bitmap is actually imported, so you don't need external files for your
application. But if you change the bitmap during development, you must update the
imported copy.

5 To update the bitmap, open the Properties window, select the Bitmap property
Value field and press F2.
180

10.8 How to Use Controls in Applications
This causes the field to be reevaluated, and forces the bitmap to be imported again.
The size of the bitmap can not exceed 32 Kb.

Adding a Data Dependent Picture as a Picture Box
Adding a bitmap in a picture box control instead of in an image control gives you some
more advanced possibilities. While the image control is static, the picture box control is
dynamic. If you create a list of bitmaps, a bitmap from this list can be chosen at run
time (the total size of all the bitmaps in the list can be 32 Kb).

One of the other advantages of a picture box is that it can display pictures that are
stored in BLOB fields. A BLOB field can have a size of up to 2 GB.

To add a picture box:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Picture Box tool.

3 Click and drag in the design area to create a picture box control.

4 Open the Properties window for the picture box control.

To create a list of bitmaps from which one can be selected at run time for display,
enter a comma-separated list of the path and names of the bitmaps that you want
to use.

Remember that the size of the entire list of bitmaps must not exceed 32 Kb.

The system provides a series of standard bitmaps that can be chosen by entering a
number between 1 and 53 – see the Bitmap entry in the C/SIDE Reference Guide
online Help for details.

5 The value of SourceExpr determines which bitmap is chosen by the system: the first
in the list has number 1, and so forth. If the SourceExpr calculates a value outside the
range of bitmaps, no bitmap is displayed. We will explain how to enter C/AL
expressions into the SourceExpr field later.

To display a picture stored in a BLOB field, enter the field name of the BLOB field as the
SourceExpr. Do not enter a BitmapList property.
181

Chapter 10. Designing Forms
Pictures on Command, Menu and Option Buttons and in Check Boxes
Command buttons, menu buttons, option buttons and check boxes can all display a
bitmap picture instead of – or in combination with – a caption.

They all have a property called Bitmap. Here you can enter the path and name of a
bitmap. The maximum size of the bitmap is 32 Kb, and it is actually imported, not
referenced. This means that if you change the original bitmap, you will have to re-
import it.

They also have a property called BitmapPos, where you can select the alignment of the
bitmap within the control. This is especially useful when you combine a caption and a
bitmap.

Using a bitmap on a button or a check box can sometimes make the interface more
intuitive. A well-chosen picture may be easier to remember and identify than a label.

Using an Indicator to Display Values
The indicator control allows you to display values graphically, as an analog gauge. A
minimum and a maximum value must be defined, so that the system can calculate the
scale of the indicator. If you do not provide these values, the system uses default values
(see the online C/SIDE Reference Guide for details).

To create an indicator:

1 Open the form in the Form Designer.

2 Select the indicator tool, and click and drag in the design area to create the
Indicator.

3 As the SourceExpr of the Indicator, enter the value you want to control the indicator.

4 Set the MinValue and MaxValue properties of the Indicator.
182

10.8 How to Use Controls in Applications
5 Set the Percentage property to choose whether or not the indicator will display
percentages. If this property is Yes, the “%” symbol is displayed – otherwise, it is not.
The gauge itself is the same when Percentage is No and when it is Yes. (The
percentage is calculated as ((value of SourceExpr) – MinValue) / (MaxValue –
MinValue))*100).

Creating a Tab Control
A tab control is useful when you are designing a form that is based on a table with
many fields. Instead of creating a large form, cluttered with controls, you can group
controls together on pages that the user can bring to the front by clicking the tabs.

You can use a form wizard to create a form with a tab control.

To create a tab control manually:

1 Open the form in the Form Designer.

2 Select the Tab Control tool and click and drag in the design area to create a tab
control.

3 Open the Properties window for the tab control, and create the pages you need by
entering a name for each page as a comma-separated list in the PageNames
property. The names will be used as captions on the tabs.

4 The tabs are created while you are in the Form Designer. You can select pages by
clicking the tabs.

5 Add controls on the pages. You can think of each page in a tab control as a frame
and add controls as you would in a frame.

Creating a Table Box
A table box is useful when you need to display many records from a database table at
the same time. A table box contains columns and rows, and the user can move through
the records, either by clicking navigation buttons (as) or by using arrow keys and
PAGEUP and PAGEDOWN. If the form is too narrow to display all columns, a horizontal
scroll bar will automatically be added to the control.

You can use a form wizard to create a form with a table box.

To create a table box manually:

1 Open the form in the Form Designer. Select the table box tool, and click and drag in
the design area to create a table box.

2 If the form is not related to a table, you can establish a relation now, by setting the
SourceTable property of the form to the name of the table.
183

Chapter 10. Designing Forms
3 Open the Field Menu.

4 Select the fields you want in the table box from the Field Menu and click inside the
table box. A column will be added for each field, and each row will display a record
from the table. A label, derived in the same way as a label for any text box, is added
as a column heading.
184

Chapter 11

Extending the Functionality of Your
Forms

This chapter explores form design further, including sections
on forms related to multiple tables, on creating menus and
on writing C/AL code in triggers.

· Main Forms and Subforms

· Looking Up Values and Validating Entries

· Drilling Down to the Underlying Transactions

· Launching Another Form

· Designing Menu Buttons

· Form and Control Triggers

· Form Types and Characteristics

Chapter 11. Extending the Functionality of Your Forms
11.1 Main Forms and Subforms

A well-designed database does not store redundant information, but has a number of
relationships between tables. The typical relationship is a one-to-many relationship.

For example, if you are designing an application that handles sales orders, there can be
many items on one single sales order, but one specific item can only be part of one
sales order. Some of the information on a sales order, such as the address of the
customer, is per order, while other information, for example the item number, is per
item. In a well-designed database, with no redundant information, this means that the
information on a sales order is stored in two tables: one, a header table, with the
general order information, the other, a lines table, with the information about each
item. There is a one-to-many relationship between the tables.

However, users of the application need to view information from both tables at the
same time.

The header information together with the lines could look like this:

Although this looks like a normal form, it is actually two forms.

The main form is the one side of the one-to-many relationship. In this example, it is
based on the Sales Order Header table. The subform is the many side of the
relationship and is based on the Sales Order Line table. When you select a sales order
header in the main form, the subform is updated to display only sales order lines that
are related to this sales order header. There is a link between the main form and the
subform to keep the information synchronized.
186

11.1 Main Forms and Subforms
Designing the Main Form
There are no special procedures involved in designing the main form in a main
form/subform relationship.

To create a subform, you add a subform control. The subform control establishes the
link between the main form and the subform, but it is not itself a form. You can,
however, display any form in the subform control.

If you are going to use an existing form as the subform, follow the procedure described
here. If you are going to create a new form to use as the subform, it may be more
convenient to create the subform first. This is described in the next subsection.

To create the main form in a main form/subform relationship:

1 Open the existing form in the Form Designer.

2 Open the Toolbox and select the Subform tool.

3 Click and drag in the design area to create the subform control.

4 Open the Properties window (SHIFT+F4) of the subform control.

5 Enter the name of the form that the subform is based on as the SubFormID property
(or use the lookup button to select the form from a list).

6 Enter the expression that links the two tables (for example the field that is common
for the tables) as the SubFormLink property. There is an assist-edit function available
to help you (click the AssistButton k to open the assist-edit window). Select the field
name from the many side of the relationship (the subform table) as the Field. Then
select FIELD as the Type of the relationship. Finally, select the field from the one side
of the relation (the main form table) as the Value.

7 In the SubFormView property, you can specify the key, sort order and table filter to
apply to the table when it is displayed in the subform. (You do not have to enter
anything.)

Example

In the SubFormLink property, apart from FIELD you can select other types of link. If you choose
CONST, Value must be a constant expression that selects records where the Field matches this
expression. If you choose FILTER, Value must be a filter expression, for example, 10|30..40.

Designing the Subform
There are no special requirements for a subform. However, you must remember that
the form is going to be used to display the many side of a one-to-many relationship,
and that all forms are not suitable for this task.

Typically a subform is a tabular form, that is, a form with a table box. The table box
should fill out the form completely, and the HorzGlue and VertGlue properties of both
the table box on the subform and the subform control on the main form should be set
to Both. This ensures that the subform and the table box are resized when the main
form is resized.
187

Chapter 11. Extending the Functionality of Your Forms
Hints and Advice
Although creating a form with a subform is no different than creating controls on
forms in general, you may have to experiment before you find the best way to do it.

Here are some hints and advice to help you along:

• It can be difficult to get the sizing of the subform control on the main form and the
size of the subform right. You should finish the design of the subform first. Get the
values for the width and the height of the form from the Properties window of the
subform. Then, in the main form, click and drag a subform control of any size. In the
Properties window, insert the width and height of the subform as the width and
height of the subform control.

• Generally, if the subform is a tabular form, it looks better if you let the table box
completely fill out the form vertically. This ensures that there is no extra space
around the table inside the subform control. Set the HorzGlue and VertGlue
properties to Both.

• If the subform is a tabular form, you should set the size of the form so that it only
displays a few records at a time. Then, in the main form, set the VertGlue and
HorzGlue properties of the subform control to Both. You can resize the main form
vertically and horizontally, and the subform is resized along with it so that either
more or less records and fields are displayed.
188

11.2 Looking Up Values and Validating Entries
11.2 Looking Up Values and Validating Entries

The previous section described how to create a main form and a subform in order to
display data from a one-to-many relationship. The main form was bound to the table
on the one side of the relationship, and the subform was bound to the many side of the
relationship.

Suppose instead, that you are designing a form that is bound to a table that contains
information about customers. Some of this information is unique for each customer,
but some of the information is not. The names and addresses of the customers are
unique, but perhaps you want to store information about the shipper that is normally
used for deliveries to each customer. There are only a few shippers, and it would be
redundant and in violation of relational database design rules to store information such
as the addresses of these shippers in the customer records.

Instead, you should create a Shipper table, and use a Shipper Code field to create a
link between this table and the Customer table. You should only store the shipper
code in each customer record in the Customer table and store all the other
information about the shippers in the Shipper table.

This is the many side of a one-to-many relationship. Each customer can be associated
with only one shipper, but a shipper can be associated with many different customers.
A main form/subform structure is not applicable here. (Although it would be applicable
if you were to design a form to display information about the shippers. The subform
could then display a list of the customers that use each shipper.)

Customer Record

Number

Name

Address

...

Shipper Code

Shipper Record

Shipper Code

Name

Address

Phone

....

Customer Record

Number

Name

Address

...

Shipper Code

Customer Record

Number

Name

Address

...

Shipper Code
189

Chapter 11. Extending the Functionality of Your Forms
There are two things to consider when creating the Customer form (and table):

• Do you want an easy way to enter the shipper code?
• Do you want to validate the Shipper Code field in the Customer table against the

Shipper table? That is, do you want the system to verify that the contents of the
Customer table field are present in the Shipper table?

If you do not establish a relationship to the Shipper table, you must memorize the
shipper codes. This means that you can easily enter a code that does not exist in the
Shipper table. If the tables are related, the system provides a lookup function into the
Shipper table, so that you can press F6 or click a lookup button p and select the
shipper code from a list that displays the codes as well as other information such as
name and address.

A control can be related to a field in another table in two different ways. The first is by
defining the relationship at table level, as a property of the Shipper Code field in the
Customer table. The second is by defining the relationship at form level, as a property
of the text box that displays the shipper code on the Customer (main) form.

If you want to make certain that you do not enter non-existent shipper codes into the
Customer table, you can set the system up so that it validates the entries against the
Shipper table. The ValidateTableRelation property, either of the field (at table level) or
of the text box (at form level), determines whether or not the values you enter must
exist in the Shipper table.

Apart from simply ensuring that the entered codes exist in the Shipper table, you can
create more advanced validation rules that check the entered codes against
combinations of values of fields in both tables. For example, you can have the system
check whether the shipper allotted to a customer operates in the customer's
country/region. To do this, you have to create the validation rule by writing C/AL code
in the OnValidate trigger of the control on the main form.

A form with a lookup on the Shipping Agent Code field looks like this when the
lookup function has been activated:
190

11.2 Looking Up Values and Validating Entries
Defining the Table Relation
The relationship to a table can be defined in two different places - as part of the table
description or as part of the form description. In both places the relationship is defined
in the TableRelation property of the field or control. There is no functional difference
between a table relationship defined at the table level and one defined at the form
level. But there is a difference when you are designing an application. If the relationship
is defined at the table level, all the text boxes in the forms that have a direct
relationship to the field will have the lookup functionality – with no effort required
from the person designing the forms. You can suppress this function by setting the
Lookup property of the text box explicitly to No.

To define a table relationship:

1 Open the form in the Form Designer.

2 Open the Properties window (SHIFT+F4) of the field or control.

3 In the Value field of the TableRelation property, click the AssistButton k.

4 In the Table Relation window, enter the name of the table that you want to lookup
in the Table field or choose it from the list that appears when you click the lookup
button.

5 In the Field field, enter the name of the field in the table (or choose it from the list).

You can use the Condition and the Table Filter fields to create a more advanced
relationship than this basic one.

By using the Condition field, for example, you can lookup different tables, depending
upon the value of a field in the current table. Each condition line corresponds to a
statement in an if then...else if sequence.

In the Table Filter field, you can set a filter on the lookup table.

Validating Entries
Entries can easily be validated against the contents of a field in a related table. If you
set the ValidateTableRelation property to Yes – either at field level or at control level –
only entries that exist in the related table will be accepted.

If you need a more advanced validation, you can write C/AL code in the OnValidate
trigger of either the control or the field.

Using the Default Lookup or Writing Your Own?
If you want more control over the way a lookup functions than you can achieve by
using conditions and filters, you can write C/AL code in the OnLookup trigger. This
allows you to bypass the default lookup function completely and write your own.

The rules for determining which lookup function is performed are:

• A trigger at the form level takes precedence over one at the table level.
• Both of these take precedence over the system default action.
191

Chapter 11. Extending the Functionality of Your Forms
Defining a Lookup Form
When you are using the system lookup function, you must define which form to use to
display the results of the lookup. You can define the form in two ways:

• Each table can have a form based on it that is used for looking up into the table. This
is done by setting the LookUpFormID property of the table.

• The form can be defined by setting the LookUpFormID property of the control for
which the lookup is provided.

If both properties are set, the form that is defined as a control property is used.

If no lookup form is defined (either at table or form level), and although the text box
contains a lookup button, a lookup is not performed when the button is clicked. If you
are writing your own lookup function in the OnLookup trigger, you have to explicitly
run a form by using the RUNMODAL C/AL function.

Hint

If you always design a basic tabular form for a table and enter this form as the
LookupForm (and DrillDownForm) of the table, you will never forget to provide a
lookup form. If you later decide that this form is not adequate for some lookups, you
can add customized forms as control properties.

Permanent Assist
This is a control property. If set to Yes, the lookup button is permanently displayed;
otherwise, it is displayed only when the control has the focus.

Looking Up in the Current Table
By setting the Lookup property of a text box to Yes, you can lookup into the source
table of the form. This makes it easy for you to select records. In effect, the lookup
provides a list of all the records in the table and you can select a record from the list,
and this record then becomes the current record.

A lookup form must be defined either at table or form level in the same way as it must
be defined when the lookup is into another table. However, you cannot set conditions
and filters as you can when the lookup is into another table. The default behavior is to
display all the records in the table. If you need to change this, write your own lookup
function in the OnLookup trigger.

If a lookup into a related table is defined – regardless of how the relation is defined –
setting the Lookup property to Yes is overruled. But if Lookup is explicitly set to No (as
opposed to its default value <No>), no lookups, including to related tables, are
performed.

You can provide the same functionality by using the LookupTable action (applicable to
command buttons and menu items). In this way you can provide both types of lookup
on the same form: lookups to related tables from text boxes, and lookups to the source
table from command button actions.
192

11.3 Drilling Down to the Underlying Transactions
11.3 Drilling Down to the Underlying Transactions

FlowFields were introduced in the chapter "Table Fundamentals" on page 59. When a
text box is based on a FlowField, a drill-down button (o) is automatically attached to the
text box. When you click this button (or press SHIFT F6), the transactions that the system
used to calculate the value of the FlowField are displayed.

In the Chart of Accounts, you can execute a drill-down function in the Net Change
field - a FlowField that summarizes transactions in this account:

The General Ledger Entries window opens and displays the result of this drill-down –
a detailed list of the transactions:

The drill-down facility is provided whenever a text box is directly related to a FlowField
– you do not have to do anything special when designing the form except to make
certain that a DrillDownFormID is defined , either at table level or at form level. For
more information about defining the DrillDownFormID, see "Defining a Lookup Form"
on page 192.

Drill-downs resemble lookups in many ways, and allow you to do most of the things
that you can do with lookups. One exception is that drill-downs only apply to
FlowFields, which have to be defined when the table is designed.

Customizing Drill-downs
You can customize a drill-down in these ways:

• You can disable the drill-down altogether by setting the DrillDown property of the
text box explicitly to No.
193

Chapter 11. Extending the Functionality of Your Forms
• Text boxes based on the same FlowField will have different drill-down forms if you
define separate DrillDownFormIDs at form level.

• You can decide whether the drill-down button should be displayed permanently or
only when the text box has the focus.
This is done by setting the PermanentAssist property of the text box. Yes means that
the button is always displayed, and No means that the button is only displayed when
the text box has the focus.

• You can change the drill-down behavior by writing C/AL code in the OnDrillDown
trigger of the table field or in the control.

In this case you have to run a form explicitly from your trigger code.
194

11.4 Launching Another Form
11.4 Launching Another Form

When you use a lookup function to select values in a related table, you typically only
display a subset of the fields in the lookup table.

In some situations, however, it would be convenient if you were able to update more
fields in the related lookup table than are displayed on the lookup form without having
to close the current form.

If you are taking orders by phone, it is convenient when you can use a lookup function
on the sales order form to find the customer numbers as the customers call in.
However, a customer could call in to order something and inform you that they have
changed their address. It is both time-consuming and annoying to have to close the
sales order form, select the customer form, find the customer, change the address, and
then return to the sales order form to start entering the order again.

A better solution would be to launch the customer form directly from the sales order
form, automatically select the appropriate customer record, update and close the
customer form, and continue filling out the sales order form.

In order to launch another form, you can add a control that has a PushAction property
and run the customer form with parameters that select the correct record from the
Customer table whenever you "press" the control. You can use command buttons,
menu items, check boxes or option buttons.

Adding a Command Button
To add a command button that launches a form:

1 Add a command button (the procedure is described in "Designing Forms" on page
151).

2 Set the PushAction property of the command button to RunObject.

3 Set the RunObject property of the command button to the name of the form you
want to launch. Because you can use RunObject to run any object, you must specify
the type of object (Form, Codeunit, and so on). You can choose the object from the
lookup list provided (in this case, the type of the object is inserted automatically).

4 Set the RunFormLink property to establish the link to the form that you want to
launch. Use the assist-edit button to create the expression. First, in the Field field
select a field from the table that the form you want to launch is based on. In the
Type field, select FIELD as the type of the relationship. Finally, in the Value field,
select the field in the table that underlies the current form and remember that this
field must match the field that you selected from the other table.
195

Chapter 11. Extending the Functionality of Your Forms
11.5 Designing Menu Buttons

Although command buttons are a convenient way of adding functionality to forms,
having too many buttons on a form makes it look cluttered and detracts from both its
usability and visual design. If you have to add many command buttons to a form, you
should consider creating a few menu buttons instead.

When you click a menu button, a menu opens:

Each line in a menu is called a menu item. A menu item can:

• Perform an action when it is clicked. This can be an action from the same set of
actions as command buttons or it can be an action written in C/AL. Menu items have
OnPush triggers like command buttons.

• Contain a submenu that is opened when the line is clicked.
• Be a separator – a line used for grouping items in a menu together.

Adding a Menu Button to a Form
A menu is created in two steps. First you add a menu button to your form. This is
exactly the same procedure as adding a command button. Then you open the Menu
Designer for the menu button and create the menu items.

To add a menu button:

1 Open the form in the Form Designer.

2 Open the Toolbox and select the Menu Button tool.
196

11.5 Designing Menu Buttons
3 Select the menu button and open the Properties window (SHIFT+F4) for the menu
button. As a menu button does not have a relation to data – field or variable – the
Name and Caption properties are set to default values (such as Control7). Change
the caption to an appropriate text. If the text contains an ampersand (&), the system
interprets the following letter as an access key.

Adding a Menu Item to a Menu
After you have created and modified a menu button as described in the previous
section, you can add the menu items to the menu.

To add a menu item:

1 Select the button and click View, Menu Items to open the Menu Designer.

2 The first field, Visible, is by default set to Yes. Leave it like this.

3 Add the menu items by filling out the Caption field. If you do not create a shortcut
key (by embedding an ampersand in the Caption text), the system automatically
uses the first letter of each caption as a shortcut key. If you add menu items that
start with the same letter, set the shortcuts yourself to avoid overloading.

4 You can also define a shortcut key by entering the name of the key in the
ShortCutKey field. The different ways to enter Keys aress:

Key Entered as

Function keys F1, F2, F3, ...
197

Chapter 11. Extending the Functionality of Your Forms
A shortcut key is active as long as the focus is on the form that the menu button is a
child of. Avoid accidentally overloading the key combinations so that they perform
different actions when different forms have the focus – this causes confusion. You
shouls also try to avoid using shortcut keys that the system already uses.

5 In the Action field, enter the action that you want the menu item to initiate. You can
use the drop-down list to select the action from a list. Alternatively, you can write
some C/AL code in the OnPush trigger of the menu item.

If you select RunObject you can choose to run either a form, a report or a codeunit.

6 In the RunObject field, click the lookup button to select the object that you want
the menu item to run. For other parameterized actions (such as, RunSystem) you
must set the parameters in the Properties window of the menu item. This is
explained in the next section.

Adding Other Menu Items
In addition to items that perform actions, menus can contain separators and items that
open submenus.

Separators A separator is a horizontal line in a menu that cannot be selected or perform any
action. Separators help you group items on a menu. To add a separator to a menu,
select the line after which you want to insert it and click the Separator button in the
Menu Designer.

Submenus and menu
levels

Menu items can be nested, that is, when you click a menu item, another menu can
open.

You define submenus in the Menu Designer by indenting one or more menu items. To
indent a submenu, select it and click the right-arrow button. The indented item
becomes a menu item on a submenu.

In the Properties window of a menu item and you see that when the menu item is
created the MenuLevel property is set to the default value of zero. As the item are
indented, the MenuLevel is set to 1, 2, 3 and so on – one level for each click on the
indentation button (you can cancel indentation by clicking the left-arrow button – each
click cancels one level of indentation).

CONTROL, ALT, SHIFT CTRL, ALT, SHIFT

Other keys A, B, C, ... (these keys must be part of a key combination with CTRL or
ALT).

Key combinations For example: CTRL+A, SHIFT+F2

Key Entered as
198

11.5 Designing Menu Buttons
There are a few logical rules that you must follow when creating submenus:

• At least one item in each menu must have MenuLevel 0 (zero).
• Each MenuLevel can only be one level higher than the preceding level in the list.
• If a higher MenuLevel follows a lower one (for example, 1 follows 0), the menu item

with the MenuLevel 0 opens the submenu, and the item with MenuLevel 1 becomes
an item on this submenu. A menu item that opens a submenu cannot have any
action associated with it.

• There can be up to 10 menu levels (numbered from 0 to 9).
• If the MenuLevel reverts to lower numbers (with a lesser indentation), the menu

items become items in a previous menu at the level indicated by the MenuLevel.
• Separators cannot open submenus. Separators can only separate items that are on

the same level. This means that you cannot put a separator as the first, last or only
item on a menu or submenu.

Displaying Check Marks on Menu Items
When menu items that act as toggles, the on/off state is indicated by the presence or
absence of a check mark next to the menu item.

The SourceExpr property of a menu item controls whether a check mark is displayed.
Initially, the SourceExpr property is undefined. You can define it with a valid C/AL
expression that evaluates to a Boolean. The check mark appears when the value is
TRUE.

This feature is used in C/SIDE itself. For example, on the Format menu, the Snap to Grid
menu item can either be on or off. When it is on, the check mark is displayed.
199

Chapter 11. Extending the Functionality of Your Forms
11.6 Form and Control Triggers

Although the system interprets and acts upon many events in a predefined way, certain
actions – such as opening a form or clicking a command button – make the system
execute a user-defined C/AL function. The event triggers the function.

You typically use triggers for advanced validation, to initialize variables in a non-trivial
way, or perhaps to format text boxes according to the value of a field or control. In
short, you use triggers whenever the system's default behavior does not suit your
purpose.

Overview of Form Triggers
The following triggers apply to forms in C/SIDE:

Form trigger name Executed when...

OnInit the form is loaded, but before the controls are available.

OnOpenForm the form is initialized (the controls are available).

OnQueryCloseForm the form is about to close, but before OnCloseForm. If this trigger
returns FALSE, the form is not closed. The intended use is to ask the
user if they really want to close the form.

OnCloseForm the form is about to close, and after OnQueryCloseForm.

OnActivateForm the form is activated, that is, when the form becomes the active
window.

OnDeactivateForm the form ceases being the active window.

OnFindRecord the form is opened and a record is retrieved – and also when the
user chooses to go to the first or the last record.

OnNextRecord the system determines how to select the next record, for example
after a user pressed PAGEDOWN (in a card form).

OnAfterGetRecord a record has been retrieved but not yet displayed.

OnAfterGetCurrRecord the current record is retrieved. In a table box, OnAfterGetRecord is
called for all the records displayed, while this trigger is called for the
current record.

OnBeforePutRecord a record is about to be saved.

OnNewRecord a new record has been initialized but not yet displayed.

OnInsertRecord a new record is about to be inserted in the table.

OnModifyRecord a record is about to be modified in the table.

OnDeleteRecord a record is about to be deleted from the table.

OnTimer after the OnOpenForm trigger and after the time specified in the
TimeInterval property of the form has elapsed.

OnCreatehyperlink you create a URL to a form so that you can send it by e-mail or
paste it to your desktop.

OnHyperlink you click a hyperlink and after the OnInit trigger is executed.
200

11.6 Form and Control Triggers
The table only sketches out the main purpose of each trigger. For more extensive
descriptions and details about these and other triggers, see the C/SIDE Reference Guide
online Help.

Note

The three triggers OnInsertRecord, OnModifyRecord, and OnDeleteRecord correspond
to triggers at table level. If you use triggers at both form and table level, the triggers at
form level are executed first.

Overview of Control Triggers
Controls have a varying number of triggers depending on the type of control. Static
controls and container controls have no triggers at all, while text boxes have a full
range of triggers.

Other data controls and data container controls have a subset of the possible triggers.
Controls that can be clicked - such as command buttons, menu items and check boxes
- have a special trigger to handle this. The following table outlines the full range of
triggers. The column on the right indicates the controls that the trigger applies to.

Controls are
1 - command button, 2 - menu button, 3 - check box, 4 - option button, 5 - text box, 6 - picture
box, 7 - indicator, 8 - subform, 9 - menu item

Control trigger
name

Executed when... Controls

OnActivate the control is activated. 1,2,3,4,5,6,7,8

OnDeactivate the control is deactivated. 1,2,3,4,5,6,7,8

OnFormat the control is about to be updated. 5

OnBeforeInput the control is selected for input and before any input
is actually entered.

5

OnInputChange the user is entering data. This trigger is repeatedly
executed, after each keystroke.

5

OnAfterInput the user finishes input. 5

OnPush the control is pushed. 1,3,4,6,7,9

OnValidate the control loses focus. 3,4,56,7

OnAfterValidate the value entered has been validated. 3,4,5,6,7

OnLookup the user requests a lookup (by clicking a lookup
button or pressing F6).

5

OnDrillDown the user requests a drill-down (by clicking a drill-
down button or pressing SHIFT F6).

5

OnAssistEdit the user requests assist-edit (by clicking an assist-
edit button or pressing SHIFT F2).

5

201

Chapter 11. Extending the Functionality of Your Forms
For more extensive descriptions of these triggers, see the C/SIDE Reference Guide
online Help.

Note

OnValidate is also a field trigger at the table level. If both triggers (field and control) are
defined, the field trigger is executed before the control trigger (and the system default
validation before anything else).
OnLookup is also a field trigger at the table level. The flow is different here: when a
lookup is requested, the system executes the control lookup trigger, if it is defined, in
place of the field lookup or system default. If no control lookup trigger is defined, a
field lookup trigger (if defined) replaces the system default lookup function.

How to Define and Modify Form and Control Triggers
You can define a function that is triggered by a form or control event or modify an
existing function.

To define or modify a form or control trigger:

1 Open the form in the Form Designer.

2 Select the form or the control (or menu item) and click View, C/AL Code (F9) to open
the C/AL Editor:

3 In the editor, you have access to the triggers that apply to the object that you
selected. Enter C/AL code in the triggers you want to use, or modify the existing
triggers.

4 Click Tools, Compile (F11) to test-compile the form including the code that you have
added or modified.

If you are not familiar with the C/AL programming language, you should read Part 6,
"Codeunits" on page 277.
202

11.7 Form Types and Characteristics
11.7 Form Types and Characteristics

This section describes the types of windows that Dynamics NAV contains. It then
describes the different types of form that you can create in your applications, gives
some examples and explains the characteristics of each.

Dynamics NAV contains five basic kinds of window:

Dialogs These are simple windows that display information and prompt you for a
response. You can respond by pressing a button, such as OK, Cancel, Yes, No and so on.
These are generated by C/AL functions such as ERROR, MESSAGE, TESTFIELD, CONFIRM
and so on, or are created by the programmer using a variable of the Dialog data type.
Dialogs are not associated with forms.

Request Panels These windows are found only within reports and are not associated
with forms.

Unbound Forms These are forms that are not associated with a table. Like Request
Panels they are used when you must answer a few questions before the system can
continue processing.

One-Record Forms These are forms that are associated with a table. They let you see
and possibly edit only one record from one table at a time. A card form is a typical
example of a one-record form.

Multi-Record Forms These are forms that are associated with a table. They let you
see multiple records from one table at once and possibly edit them. Examples of these
include Tabular Forms, TrendScape Forms and Matrix Forms.

The forms that are associated with tables (the last two listed) are the building blocks of
Dynamics NAV.

Although C/SIDE lets you create many kinds of form that look and operate in many
different ways, Dynamics NAV only uses a few of these possibilities. This gives the
application a consistent look and feel.

It is strongly recommended that you follow this policy for all the modifications that you
make to Dynamics NAV and for any application that interfaces with it. All the following
descriptions assume that you follow the Dynamics NAV standards.

Types of Forms and Examples
There are several types of standard form in Dynamics NAV. The following table lists the
most common types of form and contains some examples of each type. A more
detailed description of each type appears in the following sections..

Type Single Record/Multi-Record Examples

Card Form Single Record Customer Card,
Vendor Card,
Item Card

Statistics Form Single Record Customer Statistics,
Vendor Statistics,
Employee Statistics
203

Chapter 11. Extending the Functionality of Your Forms
When you understand these standards you will be able to understand the different
areas of the application after just a superficial look at the objects.

Card Forms
Card Form Characteristics A card form lets you view and edit one record in a table
at a time. A card form is used when there are too many fields, to view them all
conveniently on only one line. Card forms always have tabs (like index tabs) across the
top, which you can select to view different groups of fields.

Even if there are only a few fields, there is at least one General tab. The General tab is
always first.

The table's primary key field is always the first field in the General tab. Tables that use
card forms only have one field in the Primary Key.

Naming Card Forms Card forms are named after the table they are associated with,
followed by the word "Card". For example, the card form associated with the Customer
table is called the Customer Card. Card forms also have at least one menu button at
the bottom of the frame and this button has the same name as the table that the card
is based on and gives you access to related information.

Statistics Forms
Statistics Form Characteristics A statistics form is a one-record form that lets you
view but not edit information. It usually contains FlowFields, which let you drill down to
get to more information. Usually, a statistics form also contains calculated or derived
information contained in variables, which cannot be drilled down.

Statistics forms can also contain tabs that help organize the information.

The table's primary key is only displayed in the form's title bar.

Naming Statistics Forms Statistics forms are named after the table with which they
are associated, followed by the word "Statistics". For example, the statistics form
associated with the Customer table is called Customer Statistics.

Tabular Form Multi-Record Currencies,
Payment Terms

List Form Multi-Record Customer List,
Item List,
Item Ledger Entries

Worksheet Form Multi-Record General Journal,
Cash Receipts Journal,
Item Transfer Journal

Header Form,
Line Form

Single Record and Multi-Record Sales Invoice,
Posted Purchase Credit Memo,
Finance Charge Memo

Setup Form Single Record General Ledger Setup,
Company Information,
Sales & Receivables Setup

Type Single Record/Multi-Record Examples
204

11.7 Form Types and Characteristics
Entry statistics forms are a special version of the statistics form. They are named after
the table they are associated with, followed by the words "Entry Statistics". For example,
the entry statistics form associated with the Customer table is called Customer Entry
Statistics.

Tabular Forms
Tabular Form Characteristics A tabular form is a multi-record form that lets you
view multiple records from a table and edit them. Each record is displayed as a single
row in the tabular form and each field is displayed as a column forming a spreadsheet-
like table within the form itself.

The primary key of the associated table is displayed in the left-most column. If there
are multiple fields in the primary key, they are displayed in order of importance in the
columns, starting from the left.

Naming Tabular Forms Tabular forms are named after the table they are associated
with – only in the plural. For example, the tabular form associated with the
Country/Region table is called Countries/Region.

In the case of associated tables that have multiple fields in the primary key, the name
can be different. For example, the tabular form associated with the General Posting
Setup table is called General Posting Setup.

List Forms
List Form Characteristics This is a multi-record form that lets you view multiple
records from a table at once, but does not allow you to edit them. It has the same
rows-and-columns look as the tabular form.

The primary key fields of the associated table are displayed in the left column.

Naming List Forms These are named after the table they are associated with,
followed by the word "List". For example, the list form associated with the Customer
table is called Customer List.

The "Specialized" Ledger Form A more specialized version of the list form is the
Ledger Form. These are used only for Ledger Entry tables. They differ from ordinary list
forms, in that although you cannot insert or delete records, you can sometimes edit a
small number of the fields. Also, the primary key is always an integer named "Entry No."
and is displayed in the right hand column rather than the left hand column.

The ledger form is given the plural of the name of the associated table. For example,
the ledger form associated with the Customer Ledger Entry table is called Customer
Ledger Entries.

Worksheet Forms
Worksheet Form Characteristics A worksheet form is a specialized version of the
tabular form. It is a multi-record form that lets you view multiple records from a table
and edit them. The difference is that when you insert a new record, the record does not
jump to another position within the form, but instead stays in the same order as you
inserted it.

This is done using the AutoSplitKey property of the form, combined with an integer as
the last field in the table's primary key.

The primary key fields of the associated table are not displayed on the worksheet form.
205

Chapter 11. Extending the Functionality of Your Forms
Naming Worksheet Forms Worksheet forms are named to reflect the purpose of the
associated table. One example is a Journal table. In this case, the name of the
worksheet form will end with the word "Journal".

Header/Line Forms
Header/Line Form Characteristics Many forms within Dynamics NAV have the
characteristics of both a card form and a tabular form, for example the Sales Invoice
form.

The fields that are common to the entire invoice are located on a card-like form with
tabs, showing one invoice at a time. However, the invoice lines display in a table-like
section of the form, where multiple invoice lines (from the same invoice) can be viewed
at the same time and edited. These are called "Header/Line" forms.

Header/Line forms are, in fact, two separate forms that are associated with two
different tables. The main form is a card form that is associated with one table. The
main form also contains a sub-form control that displays a worksheet form that is
associated with a different table, a table that is "subsidiary" to the first table. The sub-
form control manages the link between the two forms.

Naming Header/Line Forms In many cases, a Header/Line form represents a
document.

In the previous example, the Sales Invoice form, the name of the form will be the
name of the document that it represents. In other cases, the name of the form will be
whatever the name of the main form would have been without the sub-form.

These situations are described in more detail when we discuss the table building blocks.

Setup Forms
Setup Form Characteristics A setup form is a one-record form that lets you view and
edit the one and only one record in a setup table. You are not allowed to insert or
delete this record from this form. Since there are many fields, these forms use tabs to
organize the information.

Since there is only one record, the primary key is not displayed on this form.

Naming Setup Forms Setup forms are named after the table they are associated
with. For example, the setup form associated with the General Ledger Setup table is
called General Ledger Setup.

Menu Forms
Menu Form Characteristics A menu form is a non-bound form (not related to any
table) that gives you access to many of the other forms that are related to a functional
area.

The form usually consists of command buttons or menu buttons. However, the
appearance of the buttons is usually not what you would expect. The buttons
properties change so that they look basically like labels with small squares or triangles
in front of the caption. The buttons still behave like normal buttons. The only difference
is their appearance.

Naming Menu Forms Menu forms are named after the functional area they are
associated with plus the word "Menu". For example, the menu form associated with the
General Ledger functional area is called General Ledger Menu.
206

11.7 Form Types and Characteristics
Other Multi-Record Forms
There are other forms that let you view and/or edit multiple records at the same time.
These include TrendScape forms and Matrix forms. These forms give you greater
functionality within Dynamics NAV, but do not impact on the main system architecture.

An example of a TrendScape form is the Contract Trendscape window.

An example of a Matrix form is the Budget window.

Standard Navigation
This section describes how you move to one form from another. We simply mention
the standard forms of navigation that must be supported to ensure consistency
throughout the application.

Card and List Forms
Most master tables have both a card and a list form associates with them. Because both
of these forms access the same table, there are many standards that determine what
each form must do and these standards must be adhered to.

• On the card form, you must be able to view and edit one record at a time.
• On the list form, you must be able to view but not edit all the records. Making this

form non-editable allows you to begin a search by typing in a particular column.
• On the card form, you must be able to open the list form in the following ways:

By pressing F5.

By clicking the List menu item on the menu button with the same name as the table.

By clicking the List or lookup button on the tool bar.

• In the list form, you must be able to select a new record and click OK to exit the list
form and revert to the original card form. The card form must now display the
record that you selected in the list form.

• In the list form, you must be able to select a record and open a new card form by
pressing SHIFT+F5 or clicking the Card menu item on the menu button with the
same name as the table. The new card form must display the record that you
selected on the list form.

Master Statistics Forms
As mentioned earlier, most master tables have a card and a list form associated with
them. Many master tables also have a statistics form. You should be able to open this
statistics form from either the card form or the list form in exactly the same way.

The standard way of getting to the statistics form is to click F9 or the Statistics menu
item (on the menu button with the same name as the table).

Master and Ledger Forms
Every master table has at least and usually only one ledger table linked to it. From the
master forms (card, list and statistics), you must be able to open the ledger form. You
must be able to open it in three different ways:

• by clicking the drill down button on a FlowField
207

Chapter 11. Extending the Functionality of Your Forms
• by clicking CTRL+F5
• by clicking the Ledger Entries menu item (on the menu button with the same name

as the table)

If a drill down button is used, only the records that are used to create the calculated
value are displayed (this is a function of the built-in drill down functionality). If the
shortcut key or the menu item is used, all the ledger entries for this particular master
record are shown. This requires a RunFormLink on the menu item that links the two
tables. You must also keep the two forms synchronized whenever the master form is
updated. To achieve this, you must change the RunFormLinkType property to
OnUpdate.

Note

For performance reasons, you should always set the RunFormView property if the
RunFormLink property is also set. In fact, the sort order chosen in the RunFormView
property must contain the fields listed in the RunFormLink property or else
performance is decreased.

Journal Forms
Every journal form has similar buttons at the bottom of the form. These buttons allow
you to navigate to another form or perform a task.

The normal buttons on a journal form include: Line, Functions, Posting, Account and a
menu button named after the master table for the functional area. This menu button
must contain menu items that let you go directly to the card form for the master table
or to the ledger form for the ledger entries. In both cases, the form that is opened
should be linked to the master table record that the journal line is associated with.

The "Posting" menu button should contain the following menu items related to posting
the journal lines – Post, Post and Print, Test Report.
208

Part 5
Reports

Chapter 12

Report Fundamentals

Reports are used to print information from a database. A
report can be used to structure and summarize information,
and reports can be used to print documents such as
invoices. Reports can also be used to process data without
printing anything.

This chapter introduces the fundamental concepts and basic
tasks involved in designing reports.

· What Are Reports?

· What Happens When a Report Runs?

· The Report Designer

· Saving, Compiling and Running Reports

Chapter 12. Report Fundamentals
12.1 What Are Reports?

Reports have several purposes in Dynamics NAV:

• Reports are used to print information from a database in a structured way. For
example, you can create a report that lists all the customers and all the orders placed
by each customer.

• Every application document must be created as a report. For example, to print an
invoice, you must create a report that is automatically filled out with the relevant
information.

• Reports can also be used for other tasks and not just for printing. A report can be
used to automate many recurring tasks such as updating all the prices in an item list.
This could be achieved by writing C/AL code in a codeunit, but using a report is
much easier because you can take advantage of the powerful data modeling
facilities available in the report designer.

The Report Components
Reports consist of several components. The following diagram shows how these
components are related:

Report Description This is the complete description of the report including how data
is collected, and how it is presented on paper when the report is run. The report
description is stored in the database.

Data Item This corresponds to a table. To retrieve information from tables, you
define data items. When a report uses more than one table, you must set relations
between the data items so that you can retrieve and organize the data the way that
you want.

Section In a report that is going to be printed, each data item has one or more
sections. A section can be thought of as a block of information that should be printed.
The complete report is composed of a number of sections. Some sections are printed

Report Description
Properties
Triggers
Data Items

Properties
Triggers
Sections

Properties
Triggers
Controls

Properties

Request Form
Properties
Triggers
Controls

Properties
Triggers
212

12.1 What Are Reports?
only once, for example, a header and some are printed for each record retrieved from
the database.

Control The information printed in the sections is composed of controls. The
available controls are:

• text boxes – for printing the result of the evaluation of any valid C/AL expression,
such as the contents of a table field (but also for complex calculations).

• labels – for printing static text such as a caption for a column of data.
• shapes, images and picture boxes – for printing graphical elements (lines, circles)

and bitmap pictures.

Request Form A form that is run before the report starts to execute. You use request
forms to enter requests and select options for the report, for example, the sort order or
the level of detail that you want in the report.

Property A property is an attribute of an object – report, data item, section and so on,
for example, color, size, and whether or not it is displayed. Properties are set in the
Properties window of the object.

Trigger Certain predefined events that cause the system to execute a user-definable
C/AL function. The event triggers the function. The report itself, the data items, the
sections, the request form, and the controls all have triggers.

Logical and Visual Design
There are two parts to designing a report:

• Defining the logical structure or data model.
• Designing the visual layout.

Defining the data model means defining how the data is collected. This includes:

• creating data items that define the tables that the report uses.
• defining the relationships between the data items if the report uses more than one

table.
• defining the key, sort order and filters to use with the data items.
• defining how data is grouped.
• defining how totals and subtotals are calculated.
• writing C/AL code in data item triggers (if necessary) to improve the functionality of

the report.

Data items The report data model is built from data items, which each correspond to a table.
When the report is run, each data item is iterated for all the records in the underlying
table. When a report is based on more than one table, you indent the data items to
establish a hierarchy of data items and control how the information is gathered.

Example

To make a report that prints out a list of customers and lists the sales orders placed by each
customer, you must define two data items. One data item corresponds to the Customer table and
the other corresponds to the Sales Order table. The second data item should be indented. This
213

Chapter 12. Report Fundamentals
means that as the report works through the records in the Customer table, each customer's sales
orders are found by going through the records in the Sales Order table.

Sections The visual layout of a report includes the sections. In a printing report (remember that
reports do not actually have to print anything), one or more sections are attached to
each data item.

There are several types of sections, each with a specific function. Normally, the bulk of
the data is printed in the body section of a data item, while the header section is used
to print information before any data item record is printed (for example, column
captions). But some reports do not use the body section, and all the information is
printed in other sections.

The following picture shows a finished report:

This report prints sales statistics information and retrieves all the data that it uses from
one table. It demonstrates a range of features that are available for designing reports.

• Before any record from the table is printed, there is a header. The header contains a
title and information about the filter used on the customer numbers.

• Each body section prints several lines of information about a customer. The % lines
are calculated as the report is run.

• After all the records (selected by the filter) have been printed, a footer section is
printed that contains totals for the selected customers.

• In the body section and in the footer section, a filter is applied to create columns
where data is collected and totalled for different periods.
214

12.2 What Happens When a Report Runs?
12.2 What Happens When a Report Runs?

The following flow charts are simplified versions of those shown in Appendix A, Report
Flow Charts, on page 636. If you want to acquaint yourself with all the details –
including why and when triggers are executed – consult that appendix. This section
only describes the way a report is run in general terms.

The Report Run
The first flow chart illustrates the events that take place when you run a report:

1 When you initiate the report run, the OnInitReport trigger is called. This trigger
performs any processing that is necessary before the report is run. It can also stop
the report.

2 If the OnInitReport does not end the processing of the report, the request form for
the report is run, if it is defined. Here, you select the options that you want for this
report. You can also decide to cancel the report run.

3 If you decide to continue, the OnPreReport trigger is called. At this point, no data has
yet been processed.

4 When the OnPreReport trigger has been executed, the first data item is processed
(provided that the processing of the report was not ended in the OnPreReport
trigger).

Call Init Trigger

ReqForm.Run

Call PreReport
Trigger

DataItem.Run

Get Next DataItem

Call PostReport
Trigger

OK / Print / Preview

No more

OK

Cancel

Report.Run

Entry point

Exit
215

Chapter 12. Report Fundamentals
5 When the first data item has been processed, the next data item, if there is any, is
processed in the same way.

6 When there are no more data items, the OnPostReport trigger is called to do any
necessary post processing. For example, removing temporary files.

The next flow chart elaborates on step 4 – how a data item is processed:

1 Before the first record is retrieved, the OnPreDataItem trigger is called, and after the
last record has been processed, the OnPostDataItem trigger is called.

2 Between these two triggers, the data item records are processed. Processing a
record means executing the record triggers and outputting sections. C/SIDE also
determines whether the current record should cause the outputting of a special
section, such as a header, footer, group header or a group footer.

3 If there is an indented data item, a data item run is initiated for this data item (data
items can be nested 10 levels deep).

Call PreDataItem
Trigger

GetRecord

Call PostDataItem
Trigger

Header.Run

GroupHeader.Run

Body.Run

Get next lower
DataItem

GroupFooter.Run

Footer.Run

DataItem.Run

No more

No more

OK

OK

DataItem.Run
216

12.2 What Happens When a Report Runs?
4 When there are no more records to be processed in a data item, control returns to
the point from which processing was initiated. For an indented data item, this means
the next record of the data item on the next highest level. If the data item is already
on the highest level (indentation is zero) control returns to the report – as shown in
the first flow chart (Report.Run).
217

Chapter 12. Report Fundamentals
12.3 The Report Designer

You use the Report Designer to create the reports that you want to use in your
application. The Report Designer contains two additional designers:

• Section Designer, used for designing the layout of reports.
• Request Options Form Designer, used for designing request options forms.

The Report Designer
You use the Report Designer window to define the data model by adding data items
and indenting them appropriately:

You can edit the properties and triggers for each of the data items by selecting the
data item and opening the Properties window or the C/AL Editor, respectively. To edit
the properties of the report itself, select an empty line in the Report Designer window
and open the Properties window. To edit the triggers of the report itself, select an
empty line in the Report Designer window and click View, C/AL Code. Alternatively,
you can click Edit, Select Object and then open the Properties window or the C/AL
Editor.

The Section Designer
After you have defined one or more data items, you can design the visual layout of the
report in the Section Designer:

You can use the Field Menu to select fields and place them in the sections as controls.
This is described previously for forms.
218

12.3 The Report Designer
In the following picture, a number of text boxes and labels have been placed in four
sections.

You can think of each section as one or more lines on the paper that the report will
eventually be printed on. A header section is printed only once, while a body section is
typically printed several times as each loop of the report is iterated. You can control
whether the header should be printed every time a page break occurs while the body
sections of the same data item are being printed.

You can edit properties and triggers for each section by opening the Properties
window or the C/AL editor, respectively, while the section is selected.

The controls you place in the sections have a subset of the properties that controls
have on forms (not all the properties are relevant for a report), and you can use the
same tools to modify the properties (the Font Tool, the Color Tool). You can see a list of
the properties in the Properties window. For more information about these properties,
see the C/SIDE Reference Guide online Help.

The Request Options Form Designer
You use the Request Options Form Designer to create a form with fields that prompt
the user for options before the report is run. This designer works like the Form
Designer:
T

219

Chapter 12. Report Fundamentals
You only use the Request Options Form Designer if you want to prompt the user to
select some options before running the report. When a report is run, the request form
can look something like this:

As you can see, a form with a tab control has been created. The first two tabs
correspond to data items. They are created automatically (though you can control the
contents by setting properties of the data items), and used for setting filters and
defining the sort order.

The third tab, Options, only appears when the Request Options Form Designer has
been used to create a request options form.

The form has the same properties and triggers as any other form, and the same
controls can be placed on it.
220

12.4 Saving, Compiling and Running Reports
12.4 Saving, Compiling and Running Reports

After you have designed a report, you must save and compile it before it can be run.
Normally, you do this after you finish designing the report. However, you may want to
save a report that is not yet finished and therefore cannot be compiled, for example, if
the report contains C/AL code that is incomplete. You can also test-compile a report
without closing or saving it.

Saving and Compiling a Report
A report is closed when the Report Designer window is closed.

To save a report:

1 When you close a report, you are prompted to decide whether or not the report
should be saved. If it is a new report (a report that has not been saved before) you
must give it an ID and a name. The ID must be unique and follow the rules for
numbering objects - your local Microsoft Certified Business Solutions Partner will
provide you with this information.

Hint: if you enter ID and Name as report properties, these values are used, and you
are not prompted for an ID and a name when you close the report.

2 The Compiled option field is set to TRUE by default (displayed as a check mark). If
your report is not yet ready to be compiled, remove the check mark by clicking in
the field.

3 Click OK to save the report.

You can save a report without closing it by clicking File, Save or Save As. By using Save
As, you can rename an existing report (in effect copying it).

Like all the other objects in C/SIDE, reports must be compiled before they can be run.
When you are designing a report, you might want to test-compile it to find any errors
that it may contain (this is more important when the report contains C/AL code in
triggers). To test-compile a report when you are designing it, click Tools, Compile.

Running a Report
In an application, your reports can be incorporated into menus, or they can be called
from, for example, a command button on a form. However, when you are designing
reports, you will often want to run them before they are integrated into the application.

Test-running reports When you are designing a report, you can test-run the report by clicking File, Run. The
report is compiled and run in its current stage of development. It is not saved, which
221

Chapter 12. Report Fundamentals
means that you can use this function to verify that the changes you are making work as
intended before you save them.

Running reports
from the Object
Designer

You can run a report from the list of reports in the Object Designer window by
selecting it and clicking the Run button.
222

Chapter 13

Designing Reports

This chapter describes the properties of reports, and then,
by creating two examples, shows the basic steps involved in
designing reports.

· Report Properties

· Designing a Simple Report

· Designing a More Advanced Report

Chapter 13. Designing Reports
13.1 Report Properties

Properties are a system-wide feature and every application object has some properties.
Every object in a report has properties, including:

• The report itself
• Data items
• Sections
• Controls in the section
• Request forms
• Controls on a request form

You can select these objects in the following ways:

• Select a data item in the Report Designer window by clicking it.
• Select the report itself by clicking an empty line in the Report Designer or by clicking

Edit, Select Object.
• Select a section in the Section Designer by clicking either the section bar or

somewhere in the section (but not on a control).
• Select a control by clicking it.

When an object is selected, click View, Properties to open the Properties window:

You set the value of each property in the Value field. As soon as you leave this field (by
pressing ENTER or by moving with the arrow keys), the property is updated. If you
entered an error, the update is not accepted and you must enter a correct value.

Default values are displayed in angle brackets (<>). You can reset any property to its
default value by deleting the current value and then moving out of the field. This
obviously only applies to properties that have a default vale.

How Properties Are Inherited
Controls that have a direct relationship to table fields inherit the settings of those
properties that are common to the field and the control. For example, if you have an
accounting application that stores some calculated amounts with five decimal places
(for precision). But on a printed report, you only want to display currency amounts with
224

13.1 Report Properties
the usual number of decimal places. You can then change the DecimalPlaces property
of the text box control to display fewer decimals than the default (but not more).

Report Properties
The following table briefly describes the report properties. The C/SIDE Reference Guide
online Help contains more detailed information about these properties and you can
get context-sensitive Help for a property by opening the Properties window for the
report, selecting the property in question and pressing F1.

To open the Properties window of a report, select an empty line in the Report
Designer or click Edit, Select Object and then click View, Properties (SHIFT+F4).

Property Meaning

ID ID of the report – must be unique among reports.

Name Name of the report.

Caption Caption (shown on request form window, for example – default is the
same as Name).

CaptionML The translations of the caption.

ShowPrintStatus Whether or not the printing status window should be displayed during
printing (with the opportunity to cancel printing).

UseReqForm Whether or not the request form should be run before the report.

UseSystemPrinter If Yes, then the system default printer is suggested as printer for the
report. If No, then the printer defined for the combination
User/Report in the setup of the system is suggested.

ProcessingOnly If No, printing–only processing. If Yes, the report cannot have sections.

TransactionType The behavior of a transaction in Dynamics NAV and takes effect from
the beginning of a transaction. There are four basic transaction type
options: Browse, Snapshot, UpdateNoLocks and Update. There is a
Report option that maps to one of the basic options and enables a
report to use the most concurrent read-only form of data access.
When you use C/SIDE Database Server, it maps to Snapshot and when
you use SQL Server, it maps to Browse.

Description Description – for internal purposes, as it is not visible to the user.

TopMargin Topmargin in 1/100 mm.

BottomMargin Bottom margin in 1/100 mm.

LeftMargin Left margin in 1/100 mm.

RightMargin Right margin in 1/100 mm.

HorzGrid Distance between horizontal gridlines (1/100 mm).

VertGrid Distance between vertical gridlines (1/100 mm)

Permissions The permissions of the report to access database objects. (The report
can have wider permissions than the individual user, thereby enabling
the user to print reports that retrieve information from tables that he
or she cannot normally access.)
225

Chapter 13. Designing Reports
Data Item Properties
The next table briefly describes the data item properties.

The C/SIDE Reference Guide online Help contains more detailed information about
these properties and you can get context-sensitive Help for a property by opening the
Properties window for the report, selecting the property in question and pressing F1.

Orientation Sets the page orientation for this report – Portrait or Landscape.

PaperSize Sets the paper size for this report.

PaperSourceFirstPage Specifies the paper source to use for printing the first page of this
report. This is useful if the report has a cover.

PaperSourceOtherPage Specifies the paper source to use for the rest of the pages in this
report.

DeviceFontName Use this property for reports that are designed specifically for dot
matrix printers to prevent the printer from switching into graphics
mode when printing text. Specify the name of a device font (a font
that is built into a printer).

Property Meaning

Property Meaning

DataItemIndent The indentation level (can be set in the designer when creating data
items).

DataItemTable The table that the data item is based on (can be set in the designer
when creating data items).

DataItemTableView The key, sort order and filters to apply.

DataItemLinkReference The DataItemVarName of a less-indented data item that this data item
will be linked to.

DataItemLink Link between the current data item and the data item specified by
DataItemLinkReference.

NewPagePerGroup Whether or not each group should be printed on a separate page.

NewPagePerRecord Whether or not each record should be printed on a separate page.

ReqFilterHeading The caption for the request form tab that relates to this data item
(default is the name of table that the data item is based on).

ReqFilterHeadingML Translations of the caption for the request form tab.

ReqFilterFields Names of the fields that will be included in the request filter form.

TotalFields Names of the fields for which totals will be calculated.

GroupTotalFields Names of the fields that will be used for grouping data.

CalcFields Names of the fields that will be calculated after a record has been
retrieved.

MaxIteration Maximum number of data item loop iterations.

DataItemVarName Name of record as variable (default is the name of table that the data
item is based on).
226

13.1 Report Properties
Section Properties
The next table briefly describes the section properties. All the properties are described
in detail in the online C/SIDE Reference Guide online Help. You can get context-
sensitive Help for a property by opening the Properties window for a section, selecting
the property in question and pressing F1.

Control Properties
Controls in reports have the same properties as controls on forms. The Properties
window of a control shows the properties, and they are described in the C/SIDE
Reference Guide online Help.

PrintOnlyIfDetail Print item only if sublevels generate output.

Property Meaning

Property Meaning

PrintOnEveryPage Whether or not the header and footers should be printed on every
pages.

PlaceInBottom Whether the footer should be placed below the last line or at the
bottom of the page.

SectionWidth Width in 1/100 mm.

SectionHeight Height in 1/100 mm.
227

Chapter 13. Designing Reports
13.2 Designing a Simple Report

This example shows you how to create a very simple report, in which a list of customers
is created, based on one table that contains customer information.

Defining the Data Model
The first step in creating this simple report is to define the data model on which the
report is based. You define the data model by creating the data items.

To create a data item:

1 Click Tools, Object Designer (SHIFT+F12).

2 In the Object Designer, click Report, New and C/SIDE opens the New Report
window:

3 In the Table field, click the AssistButton p to select a table from the Table List
window.

4 In the Report section, click Create a blank report and then click OK. The Report
Designer window opens:

5 In the first Data Item field, click the AssistButton p and select a table from the Table
List window. For this example, select the Customer table.
228

13.2 Designing a Simple Report
6 Click View, Properties (SHIFT+F4) to open the Properties window for the data item.

7 Select the DataItemTableView property and in the Value field, click the AssistButton
k to open the Table View window:

8 Select the key, sort order and filters to use and then click OK. In this example, the
No. field is chosen as the key, and the sort order is set to Ascending. The Table
Filter field is left empty, meaning that a permanent filter is not defined on the table.

9 Select the ReqFilterFields property, and in the Value field, click the AssistButton k to
open the Field List window:

10Select the fields on which users will frequently need to set filters. You can use the
lookup function to select them. In this example, the fields No. and Country/Region
Code are selected. When you have selected the fields, click OK.

11Click File, Save to save the report and then run it from the Object Designer to see the
request form for this report. Alternatively you can just click File, Run to see the
request form.

To learn more about saving and compiling reports see, "Saving, Compiling and
Running Reports" on page 221.
229

Chapter 13. Designing Reports
The following picture shows the request form that you see when this report is run:

You have already specified the key and sort order when you were designing the report,
so the only choice left is to set the filters.

The fields that you defined as ReqFilterFields are shown, but you can decide to place a
filter on other fields by adding lines below those already used. Remember that users
can almost always choose to set filters on fields which you did not specify.

Nevertheless, it is usually a good idea to add the fields that the users of the report will
frequently set filters on. You should always strive for balance in your design. If the table
has a lot of fields, inexperienced users may find it difficult to find the relevant fields that
they want to set filters on.

You can remove the tab where you set the filters altogether by not defining any
ReqFilterFields for the data item and by setting the DataItemTableView to define a sort
order. If you create a request options form, it will still be shown.

If there is no request options form, an empty form is displayed. On this, users can
choose Print, Cancel, and so forth. If you set UseReqForm to No, the report will start
printing as soon as it is run. In this case, users cannot change their minds and cancel the
report run. (It will still be possible to cancel the print run, but some pages will probably
be printed).

If a DataItemTableView is not defined, users can select the key and sort order at
runtime. Then, the request form looks like this:
230

13.2 Designing a Simple Report
When you click Sort, you can choose the key and sort order from this form:
k

Note

Be careful what you allow users to change. In a more complex report that involves data
from several tables, the functionality may depend on a specific key and sort order. On
the other hand, letting the user choose filters freely does not interfere with the logic of
the report. In a very simple report like this, you can select a key and define a sort order
if you want, or leave it up to the user.

Using the Wizards
In the New Report window, in the Report field, you could have chosen to use one of
the wizards, for example Form-Type Report Wizard, rather than creating the report
from scratch.

The wizards guide you through the process of selecting the fields that the report is
based on and the sorting order.

Note that on the first page of the wizard, the contents of the Available Fields field are
the Caption properties of the fields – not the Name property.

Designing the Sections
So far, only the data model of our simple report has been defined and nothing will be
printed. The next step is to design the sections.

To design the report sections:

1 While the Report Designer window has the focus, click View, Sections to open the
Section Designer.

After you have created a data item as described earlier, the Section Designer looks
like this:
231

Chapter 13. Designing Reports
2 As you can see, a section named "Customer,Body (1)" has been inserted. ("1"
means that this is currently the first section of this data item.) By default, a Body
section is inserted for each data item that has been created. These sections appear in
the same order as the data items in the Report Designer.

3 Click Edit, Insert New to insert a header section for the Customer data item. The
Insert New Section window appears:

4 Select Header as the Section Type and click OK. The Section Designer now looks like
this:

5 Click View, Field Menu to open the field menu. Select the fields that you want in the
report. (You can select multiple fields by holding down CTRL while you select the
fields you want.)

In the following example, four fields have been selected:
232

13.2 Designing a Simple Report
6 Move the mouse cursor into the Body section of the data item. Click once to activate
the window – the cursor changes into the Control Insertion cursor. Place the cursor
at the left side of the section and click again. A text box with an attached label is
inserted for each field that you selected.

7 Click View, Properties (SHIFT+F4) to open the Properties window. Click in the
Header section to ensure that the Properties window displays the properties of the
header. Look at the setting of SectionWidth (the unit of measure is 1/100 mm).

The width of all the sections has been modified to make room for the controls you
inserted (the default width, when no controls have been inserted, is 12000). In this case,
the resulting width is 15450, or 15.45 cm. If the report is going to be printed on A4
paper, this is perfectly acceptable – A4 paper is 21 cm wide.

8 Select all the labels in the Body section (hold down CTRL while clicking), and move
them all into the Header section in one go (this preserves the alignment of the labels
and text boxes).

Now, the report is ready to be printed, but it still needs some work before it will look
good on paper.

9 If the report consists of more than one page when it is run, you will want the Header
section, that contains the labels, to appear on every page. Open the Properties
window for the Header section and set the PrintOnEveryPage property to Yes.
233

Chapter 13. Designing Reports
10Moving the labels out of the Body section has left this section too high – there will
be an empty line for each customer record that is printed. To resize the Body section,
move the cursor into the Section Designer until it touches the lower bound of the
Body section and turns into the vertical resizing cursor. Then click and drag the
section upwards until it has the same height as the text boxes.

11Close and save the report and run it from the Object Designer. Click Preview and you
can see that the example described so far gives the following result with the sample
data:

As you can see, the label and the data in the No. column do not line up very nicely.
This is because both controls have their alignment set to General (the default). The
label is left aligned because it contains text, while the text boxes are right aligned
because they contain numbers.

A simple solution is to right align the label.

To realign the labels:

1 Reopen the report in the Report Designer and open the Section Designer.

2 Select the No. label and open the Properties window. Set the HorzAlign property to
Right.

3 Close and save the report.

4 Run the report in the Object Designer and click Preview.
234

13.2 Designing a Simple Report
Now the report looks like this:
235

Chapter 13. Designing Reports
13.3 Designing a More Advanced Report

The report designed in the previous exercise was very simple: it was based on one table
which it ran through and printed the records. In this section, you will learn how to
design reports that are based on more than one table.

The sample report that you will create uses two tables: one is the Customer table that
was used in the preceding example. The other table is the Sales Line table that
contains not-yet-posted sales orders that contain information about the actual items
that have been ordered by the customers. There is a one-to-many relationship
between the two tables: while one customer can have many items on order, each sales
line can only refer to one customer.

Defining the Data Model
The description of the steps involved in creating this report presumes that you are
familiar with the techniques explained earlier.

To define the data model:

1 Open the Object Designer (SHIFT+F12), click Report, New and create a blank report
that is not based on any table.

2 In the Report Designer window, select the Customer table as the first data item,
and the Sales Line table as the second data item.

3 Select the Sales Line data item and click the right-arrow button once to indent it:
.

This data model works like this:

• The report runs through the Customer data item.
• For each record in the Customer data item, the report runs through the entire Sales

Line data item.

This is clearly not what the report should do. The report should be able to select only
those Sales Line records that are related to the current customer. This is done by using
the DataItemLink and DataItemLinkReference properties.

The DataItemLinkReference property points to a data item on a higher level (with less
indentation) and the DataItemLink property specifies a field in each data item: here,
records are selected from the Sales Line table only when the Sell-to Customer No. is
the same as the No. in the Customer table.
236

13.3 Designing a More Advanced Report
4 Open the Properties window for the Sales Line data item.

5 Set the DataItemLinkReference property to the name of the less-indented data item
(Customer) that the more-indented data item (Sales Line) must be related to. In most
cases, including this one, this is the default.

.

6 In the Value field of the DataItemLink property, click the AssistButtonk to open the
DataItem Link window:

7 In the Field field, enter the name of the field from Sales Line table (the more-
indented data item) that must correspond to a field from the Customer table (the
less-indented data item). Use the lookup function to select the field. For this
example, select the Sell-to Customer No. field.

8 In the Reference Field field, enter the name of the field from the Customer table
that must correspond to the field from the Sales Line table. Again, use the lookup
function to select the field. In this example, select the No. field from the Customer
table.
237

Chapter 13. Designing Reports
9 Finally, open the Properties window for the Customer data item, and set the
PrintOnlyIfDetail property to Yes. This means that the Customer body sections are
only printed if there is data to print from the Sales Line table.

The data model now works like this:

• The report runs through the Customer data item.
• For each record in the Customer data item, records in the Sales Line data item are

selected if the Sell-to Customer No. field has the same value as the No. field in the
Customer data item.

• If there are no Sales Line records for a Customer, nothing is printed – not even the
information from the Customer data item.

Designing The Sections
As you already know how to design the sections for a report with just one data item,
the following description concentrates on showing you how to design sections that
involve two data items.

To design the sections:

1 When you first open the Section Designer, there is already a Body section for each
data item. Click Edit, Insert New and add a Header section for the Customer data
item.

2 Click View, Field Menu to open the Field Menu window and add the No., Name,
Address and Phone No. fields to the Customer, Body (2) section. Move the labels
up into the Header section.

So far, the procedure has been exactly the same as that used for creating the first,
simple report.

3 Open the Field Menu window and add the Document No., Shipment Date,
Description, Quantity, Unit Price and Amount fields to the Sales Line, Body (1)
section.

4 At this point, you need to decide what to do with the labels for the controls in the
Sales Line, Body (1) section. If they stay where they are, they will be printed for
each record of the data item. If a header section is added for Sales Line, this header
section will be printed each time the data item loop is entered. The data item loop
starts for each record in the Customer data item.
238

13.3 Designing a More Advanced Report
As neither of these solutions seems very good, you can take a third approach and
move the labels into the header section of the Customer data item, like this:

5 Set the PrintOnEveryPage property of the Customer, Header (1) section to Yes.

Now, the labels for both the Customer records and the Sales Line records will be
printed as column captions in the Customer, Header (1) section.

To make the connection between labels and data clear, the labels for the Sales Line
columns can be changed to the normal font weight instead of the default bold.
Change the text boxes of the Customer data item to bold, to make these records
stand out among the lines that are printed. (There will be a lot more records from
Sales Line than from Customer.) Furthermore, the Sales Line labels can be resized to
occupy only one line, and an empty line can be added to the header section.
239

Chapter 13. Designing Reports
6 Save and close the report, and run it from the Object Designer. This report should
look something like this when it is run with the sample data:
240

Chapter 14

Extending Report Functionality

This chapter describes how to group and total data when
creating reports in C/SIDE. It also gives an overview of the
report triggers and, finally, uses some of the advanced
facilities of the Report Designer.

· Grouping and Totaling

· Triggers in Reports

· Advanced Sample Reports

· Creating a Simple Document

· Creating a Nonprinting Report

· Types of Report

Chapter 14. Extending Report Functionality
14.1 Grouping and Totaling

How you group and total data is a crucial element of creating useful reports. By
grouping and totaling data, your reports can contain information that is not otherwise
readily available.

The second report that you created in the previous chapter was based on two tables
and listed customers and the entries from the Sales Line table that related to each
customer. You can use grouping and totaling to enhance this information in several
ways.

First, if the report is meant to provide statistics, it will be more useful if the sales lines
are grouped according to the items (grouping on the item number, which identifies
each item) instead of printing all the lines from all the sales documents. Each line would
then contain figures for the total quantity and the total amount for each item per
customer.

Second, it would be useful to have a total amount per customer, showing how much
this customer has on order.

This is the report that you create in this chapter.

Defining the Data Model
The first steps in creating this report involve designing a report similar to the advanced
report that you created in the previous chapter. You can therefore begin by reopening
that report in the report designer.

To add the grouping and totaling, follow these steps:

1 Open the Properties window (SHIFT+F4) of the Sales Line data item.

2 In the Value field of the GroupTotalFields property, enter the name of the field that
you want to use to group the records. You can use the AssistButtonk to help select
the field. In this example, the No. field is used:

3 In the Value field of the DataItemTableView property, use the AssistButtonk to
select a key. You must select a key that contains the field that you want to group by.

If the key you select is a composite key, the grouping can fail if there are other fields
in the key before the grouping field, and the contents of one of these fields changes.
You may have to create a distinct key for reports that access data in ways other than
those used by your application in general.
242

14.1 Grouping and Totaling
For this report, a secondary key consisting only of the No. field has been created for
the Sales Line table:

4 In the Value field of the TotalFields property, enter the names of the fields for which
totals should be calculated. Use the AssistButtonk to select the fields. In this
example, the Quantity and Amount fields are selected:

The Properties window of the Sales Line data item should now look like this:

This data model is now defined. This is what has been accomplished:

• For each record in the Customer data item, the records in the Sales Line data item
that are related to this customer are selected.

• Records from the Sales Line data item are grouped according to the item number.
• Totals are maintained for the Quantity and Amount fields of the Sales Line data

item.
243

Chapter 14. Extending Report Functionality
The Relationship between Totals and Sections
In this report, a hierarchy of data items has been established, where Customer is the
data item at the highest level and Sales Line is an indented data item. Furthermore, the
Sales Line records are grouped on the No. field, and totals are calculated for the
Amount and Quantity fields.

What, then, is the relationship between these totals and the sections, and how can
these totals be printed?

Until now, only the Header and Body sections have been used. To print totals, you will
need to use some new sections. The following table lists all the different types of
section:

To print out the totals, use both a GroupFooter and a Footer section for the Sales Line
(indented) data item.

The totals for Quantity and Amount for the defined group will be In the GroupFooter
section – remember that the No. field was used for grouping.

When the entire data item has been iterated, the grand total can be printed in the
Footer section of the Sales Line data item.

The flow in this example can be summarized as follows:

1 For each record of the Customer data item, a loop for the Sales Line data item is
begun.

2 Whenever the contents of the No. field change, the GroupFooter is outputted.

3 When the Sales Line loop ends, the Footer is outputted. As the Body section of the
Customer data item was printed before any section of the indented data item, the

Section Name Output

Header Before a data item loop begins and (if the PrintOnEveryPage property
of the section is Yes) also on each new page.

Body For each iteration of the data item loop. When there is an indented data
item, the complete loop for this data item begins after the Body section
of the higher level data item has been printed.

Footer After the loop has finished, and (if the PrintOnEveryPage property of the
section is Yes), also on each new page. Moreover, if the PlaceInBottom
property of the section is Yes, the Footer section is printed at the
bottom of the page, even if the data item loop ends in the middle of a
page.

GroupHeader A new group starts.

GroupFooter A group ends.

TransportHeader If a page break occurs during a data item loop, the header is printed at
top of the new page. This section is printed after a possible Header
section of the data item.

TransportFooter If a page break occurs during a data item loop, this header is printed
before the page break This section is printed before a possible Footer
section of the data item.
244

14.1 Grouping and Totaling
Footer is also the last section that is printed. Therefore, this section can be used to
print summary information about the customers.

The Quantity and Amount totals for each item that a specific customer has on order
will be placed in a GroupFooter section of the Sales Line data item. The grand total for
the Amount that the customer has on order will be placed in a Footer section of the
Sales Line data item. (A Quantity total is also maintained, but this information is not too
useful, since it will be a total of quantities for all kinds of different items.)

Note

The properties of sections, such as PrintInBottom and PrintOnEveryPage, apply to an
entire data item. This means that you cannot, for example, have two Footers for a data
item, one for the "normal" pages and one for the last page.

Designing the Sections
The next step is to design the sections in the report.

To design the sections:

1 In the Report Designer, open the report that you were working on earlier.

2 Click View, Sections and as usual, when you open the Section Designer, a body
section for each data item has been inserted.

3 Select the Customer data item and click Edit, Insert New to open the Insert New
Section window.

4 Add a Header section. This section will be used to print headings for the columns in
the report.

5 Select the Sales Line data item.

6 Click Edit, Insert New and add a GroupFooter section. This section will be used to
print the summary information about each item.

7 Click Edit, Insert New and add a Footer section for the Sales Line data item. This
section will be used to print the summary information about each customer.

In this report, nothing will be printed in the Body section of the Sales Line data item.
You must therefore, delete this section.

To delete this section:

1 Select the section bar for the Body section of the Sales Line data item and click Edit,
Delete (F4) or press DELETE on the keyboard.

2 You are prompted to confirm that you want to delete the section.
245

Chapter 14. Extending Report Functionality
3 Select the labels for the Sales Line that you added to the Customer Header earlier
and delete them. The Section Designer now looks like this:

4 Adjust the vertical size of the labels in the Header section and of the Header section
itself. The Section Designer now looks like this:

Now it is time to design the Footer sections and ensure that they display the
information you want.

To design the Footer sections:

1 Select the GroupFooter section of the Sales Line data item (by clicking the section
bar) and click View, Field Menu to open the Field Menu window.

2 In the Field Menu window, select the No., Description, Quantity and Amount
fields.

3 Click twice in the GroupFooter section of the Sales Line data item to insert these
fields. Delete the labels, and resize the section vertically.

4 Select the Footer section of the Sales Line data item.

5 In the Field Menu window, select the Amount field and insert it in the footer
section directly below the Amount field in the GroupFooter section. Select the label
246

14.1 Grouping and Totaling
and delete it. Let the section keep its default size so there is some empty space
before each new customer. The Section Designer should now look like this:

6 Select the No. label in the Customer Header and open the Properties window
(SHIFT+F4) and set the value of the HorzAlign property to Right.

7 As you may have noticed in the preview of the simple report that you designed in
the previous chapter, the demonstration data does not contain any phone numbers
for the customers. You can therefore delete the phone number fields from the
report.

8 Save, close and run the report.

9 The report will look like this in the Print Preview window:

Obviously, this report needs some more work before it will look very good and is truly
functional. For example, you need to devise a way to place captions on the columns
from the indented data item.
247

Chapter 14. Extending Report Functionality
However, the logic works: for each customer, there is a list of items where quantities
and amounts have been summarized, and the total amount for each customer is also
calculated.

One desirable improvement would be to add a line at the end of the report where the
grand total for all the customers is printed. To do this, however, you need to write C/AL
code in a report trigger. The section "Advanced Sample Reports" on page 250 gives
examples of how to do this.
248

14.2 Triggers in Reports
14.2 Triggers in Reports

Although the system interprets and acts upon many events in a predefined way, certain
actions cause the system to execute a user-definable C/AL function (the event triggers
the function). In reports, triggers are typically used to perform calculations and to
control whether or not to output sections This depends, for example, on the value in a
field, or a choice the user made in the request form. But the most important point
about triggers is that they allow you to control how data is selected and retrieved in a
more complex and effective way than you can achieve by using properties.

Reports can contain the following triggers:

Report Triggers
These triggers apply to the report itself:

Data Item Triggers
The following triggers apply to each data item of the report:

Section Triggers
These triggers apply to each of the sections of a data item:

For more information about these and other triggers, see to the C/SIDE Reference
Guide online Help.

Trigger Executed

OnInitReport When the report is loaded.

OnPreReport Before the report is run – but after the RequestForm has been run.

OnPostReport After the report has run – but not if the report was stopped manually or by
the Break function.

OnCreateHyperlink After the user creates a URL to a form or a report.

OnHyperlink After the OnInitReport trigger is executed for a report. The trigger executes
a URL string.

Trigger Executed

OnPreDataItem Before the data item is processed, but after the associated variable has been
initialized.

OnAfterGetRecord When a record has been retrieved from the table.

OnPostDataItem When the data item has been iterated for the last time.

Trigger Executed

OnPreSection Before processing a section.

OnPostSection After processing a section but before printing it.
249

Chapter 14. Extending Report Functionality
14.3 Advanced Sample Reports

This section includes examples of reports that are slightly more complicated than those
described earlier. These examples are not intended to be complete or ready to run, but
are meant to give you some inspiration that might be useful when designing your own
reports.

Using Virtual Tables
C/SIDE includes a number of virtual tables, such as the Integer table and the Date
table. The virtual tables are described in the chapter, "Special C/SIDE Tables" on page
109. This section shows you how to use the Date table, in a report.

Using the Date Table
The Date table consists of five fields, Period Type, Period Start and Period End,
Period No. and Period Name.

Period Type can be Date, Week, Month, and so on, while Period Start is the starting
date of each period and Period End is the last date in the period. (Period End dates
are closing dates.)

In this example, the Date table is used to create a report that prints information from
the Cust. Ledger Entry table. For each day in a range of dates (that can be chosen by
the user when they want to run the report), the report summarizes the entries made on
that date.

The report lists the different types of document that were entered, the number of
documents of each type and the total number of documents entered on each date. The
report also displays the total amount entered on each date. Finally, the total number of
entries and the total amount entered for the selected date range is printed at the
bottom of the report.

You could create the report by grouping the entries according to the Cust. Ledger
Entry table alone, but the field that contains the posting date in that table is not part
of any key. Creating a special key just for this report is not advisable, because it would
slow down all the other transactions that involve this table. Every sales entry would be
affected.

Defining the Data Model
This data model contains two data items – one based on the Date table and one based
on the Cust. Ledger Entry table.

To define the data model:

1 Open the Report Designer and create a new blank report with two data items with
the Date and the Cust. Ledger Entry tables as the underlying tables.
250

14.3 Advanced Sample Reports
2 Indent the Customer Ledger Entry data item:

Indenting the Customer Ledger Entry data item ensures that the system only
searches through the Customer Ledger Entry table when a date is found in the
Date table, that lies within the range specified by the user.

3 Select the Date data item and open the Properties window (SHIFT+F4).

4 In the Value field of the DataItemTableView property, click the AssistButton k to
open the Table View window:

r

5 In the Table Filter field, click the AssistButton k to open the Table Filter window.

6 In the Table Filter window, set a filter that selects records whose Period Type is
Date.

Important

This is an important step, as the iteration of the Date data item would otherwise run
through all the records, including those for Weeks, Quarters, Months and Years.

The Table Filter window should look like this:

7 Click OK in the Table Filter window and in the Table View window.
251

Chapter 14. Extending Report Functionality
8 In the Properties window of the Date data item, in the Value field of the
ReqFilterFields property, enter Period Start. This lets the user enter a range of dates
when they fill out the request form before running the report. This date range is
then used to filter the information displayed in the report.

The Properties window should look like this:

9 Open the Properties window of the Cust. Ledger Entry data item. In the Value field
of the DataItemTableView property, click the AssistButton k to open the Table View
window.

In the Key field, use the AssistButton p to open the Key List window.

In this example, an appropriate key is a key that contains the Document Type field,
as the definition of a group in this report is based on these fields. Here, a key is
selected that has this field as its first component, the other fields that are included in
the key are not important.

No individual entries will be printed, so they do not need to be sorted in any specific
way.

10Make sure the DataItemLinkReference property points to the Date data item – this is
the default value.

11In the DataItemLink property, you must specify the field that establishes the link
between the two data items. In the Value field of the DataItemLink property, click
the AssistButton k to open the DataItem Link window.
252

14.3 Advanced Sample Reports
In the Field field, use the AssistButton p to select the Posting Date field from the
Cust. Ledger Entry data item, and in the Reference Field field, select the Period
Start field from the Date data item.

12In the Value field of the GroupTotalFields property, use the AssistButton k to select
the Document Type field.

This tells the report to group the entries from the Cust. Ledger Entry table
according to their document type – Payment, Invoice, Credit Memo, Finance Charge
Memo, Reminder or Refund.

13In the Value field of the TotalFields property, use the AssistButton k to select the
Amount field.

This tells the report to add up the entries in the Amount field for each document
type for the date in question.

The Properties window of the Cust. Ledger Entry data item should now look like this:

So far, the report works like this:

• You can select a range of dates from the request form of the report.
• The report runs through the Date table, with a constant filter on the Period Type

field that selects only records whose type is Date. If you select a date range, only
dates within this range are selected; otherwise all the dates are used.

• For each date you selected, the records in the Cust. Ledger Entry data item that were
posted on that date are selected.
253

Chapter 14. Extending Report Functionality
• The records of the Cust. Ledger Entry data item are grouped according to the value
of the Document Type field, and the totals are maintained for the Amount field.

Designing the Sections
The design of the sections is fairly straightforward.

1 Click View, Sections to open the Section Designer:

As you can see, a body section has been created for each data item.

2 Click Edit, Insert New (F3) and insert a Header section for the Date data item. This
header will be used to contain the labels for the columns of data in the report.

3 Insert two GroupFooter sections for the Cust. Ledger Entry data item. You create two
GroupFooter sections for the Cust. Ledger Entry data item so that you can control
their output separately. Both sections contain summarized information about the
groups created by this data item.

The reason for this construction, as well as how to use it, is explained later.

4 Insert a Footer section for the Cust. Ledger Entry data item. This section is used to
display the subtotals.

5 Insert a Footer section for the Date data item. This section is used to display the
grand totals at the end of the report.

6 Neither data item requires a Body section – so you can delete them.

The Section Designer should now look like this:
254

14.3 Advanced Sample Reports
Adding the Fields to the Report
The next step is to add the fields that you want to include in the various sections of the
report.

To add the fields to the report:

1 In the Section Designer, select the Cust. Ledger Entry, GroupFooter (2) section
and click View, Field Menu to open the Field Menu window.

2 In the Field Menu window, select the, Posting Date, Document Type and
Amount fields.

3 In the Section Designer, click twice in the Cust. Ledger Entry, GroupFooter (2)
section to add these fields.

4 Move the labels into the Header section and align the fields so that they look
something like this:

5 In the Section Designer, select the Cust. Ledger Entry, GroupFooter (1) section
and add the Document Type and Amount fields.

6 Delete the labels for the fields that you have just added to the Cust. Ledger Entry,
GroupFooter (1) section – these extra labels serve no purpose.

7 Align the fields so that they look something like this (you might need to enlarge the
design area):
255

Chapter 14. Extending Report Functionality
As you can see, this report is far from finished. You still need to add the fields that:

• Contain the number of documents of each type that were posted on each date.
• Calculate and display the total number of documents posted on each date.
• Calculate and display the grand total number of documents posted in the period

covered by the report.
• Calculate and display the total amount posted on each date.
• Calculate and display the grand total of the amount posted in the period that the

report covers.
• Display the date range that the user used to filter the information in the report.
To accomplish this you need to write a small amount of C/AL code in the triggers and
to define some variables as well as add the appropriate fields.

Calculating the Number of Entries
The records in the Cust. Ledger Entry data item contain an amount and the total
amount is calculated by using the properties of the data item in the report. You
accomplished this in step 12 on page 253, when you set the TotalFields property of the
Cust. Ledger Entry data item to calculate a total based on the Amount field in the
Cust. Ledger Entry table. This total is calculated separately for each date and is the
basis for the grand total that you will calculate later.

Unfortunately, the number of entries cannot be calculated in the same way because
there is no field in the data item that contains this information. However, each record in
the Cust. Ledger Entry table corresponds to exactly one entry and this means that the
number of entries can be calculated by simply counting the records.

To calculate the total number of entries made on each date:

1 Create a global variable (here it is called Qty) and define its data type as Decimal:

Select the Cust. Ledger Entry data item in the Report Designer and click View, C/AL
Code (F9) to open the C/AL Editor.
256

14.3 Advanced Sample Reports
2 Add the following C/AL code to these triggers in the Cust. Ledger Entry data item:

The statement in the OnPreDataItem trigger maintains totals for the Qty variable in the
same way that the TotalFields property specifies that totals are maintained for a field in
a record. The statement in the OnAfterGetRecord trigger simply assigns a value of one
to the Qty variable each time a record is retrieved.

You are going to use the CREATETOTALS function to maintain totals for each group
and a grand total for the iteration of the data item loop. As data items are grouped
according to the Document Type field, Qty contains the sum of all the entries of the
same document type each time the Cust. Ledger Entry GroupFooter section is
printed. When the Footer section is printed, Qty contains the sum of all the entries (that
were selected, that is, all the records that were entered on the same date).

The variable in the argument of the CREATETOTALS function must be of the Decimal
data type because the function is usually used to add up amounts. This is why the Qty
variable was declared as a Decimal rather than an Integer (which would have been the
more intuitive choice).

You must now add some fields to the report that will display the totals calculated by
this code:

1 Open the Section Designer and open the Toolbox.

2 Add a text box to the Cust. Ledger Entry, GroupFooter (1) section and open the
Properties window of the text box.

3 In the Value field of the SourceExpr property, click the AssistButton k to open the
C/AL Symbol Menu window.

4 Select the Qty variable that you just defined.

5 Add a label to the Header section, open the Properties window of the label and in
the Caption property, enter Qty and make sure that the HorzAlign property is set to
Right.

The Qty variable that you have just defined is a decimal. You must therefore change
the formatting of the Qty text boxes in the sections so that they do not show any
decimal places. The format of the Qty text boxes are defined as <2:2> by default when
the SourceExpr is of the Decimal data type.

To change the formatting of the Qty text box:

1 Select the text box in the Section Designer and open the Properties window.
257

Chapter 14. Extending Report Functionality
2 In the Value field of the DecimalPlaces property change the value to 0:0. The field
will no longer display any decimals.

The next step is to add the field that will contain the total number of documents of
each type that are entered on each date that is printed in the report.

1 Copy the Qty text box that you just added to the Cust. Ledger Entry, GroupFooter
(1) section.

2 Paste it into the Cust. Ledger Entry, GroupFooter (2) section.

This text box will now display the total number of documents of each type entered on
each date.

The Section Designer should now look something like this:

The report now contains fields that list the entries in the Cust. Ledger Entry table
according to the date when they were entered and tells you how many documents of
each type were entered on that date.

Calculating the Total Number of Entries and the Total Amount Per Date
The next step in designing this report is to ensure that it displays some subtotals that
tell you how many entries were made on each date, as well as the total amount entered
on each date.

This is why you created the Cust. Ledger Entry, Footer (3) section.

To calculate these subtotals:

1 Copy the Qty and Amount fields from the Cust. Ledger Entry, GroupFooter (2)
section into the Cust. Ledger Entry, Footer (3) section.

These fields will now display the total amount entered per date and the total
number of documents entered on the date in question.

2 Add a label to the Cust. Ledger Entry, Footer (3) section, open the Properties
window of the label and in the Value field of the Caption property enter Total.
258

14.3 Advanced Sample Reports
The Section Designer should now look something like this:

Printing the Date in the First Iteration Only
In each iteration of the Date data item loop, you want to print the Date when the
information selected from the Cust. Ledger Entry data item was entered. We could, of
course, just have used the body section of the Date data item and printed the date
there (the Period Start field of the data item), but this would mean that the date
would be printed on a line by itself. Instead, we would like the date to be printed along
with the other information on the first line that comes from the Cust. Ledger Entry data
item.

One solution is to use the Date field from the Cust. Ledger Entry data item.
Unfortunately, this creates another problem. If it is added to the GroupFooter section,
the date will be printed on every line. While this would be an easy way to solve the
problem, the finished report will not be very attractive and will be cluttered with
redundant information.

A better solution is to define two GroupFooter sections for the Cust. Ledger Entry data
item. One that includes the Date field and one that does not, and then control when
they are output. This is why we created two GroupFooter sections earlier.

To add a date and control when the different GroupFooter sections are used:

1 Create a global variable called IsDatePrinted and define its data type as Boolean.
259

Chapter 14. Extending Report Functionality
2 Add the following C/AL code to the OnPreDataItem trigger of the Cust. Ledger Entry
data item:

IsDatePrinted := FALSE;

This code initializes the IsDatePrinted variable, with the value FALSE, before each
iteration of the data item loop.

3 Add the following C/AL code to the OnPreSection trigger of the Cust. Ledger Entry,
GroupFooter (1) section of the Cust. Ledger Entry data item:

IF IsDatePrinted THEN
CurrReport.SHOWOUTPUT(TRUE)

ELSE

CurrReport.SHOWOUTPUT(FALSE);

4 Add the following C/AL code to the OnPreSection trigger of the Cust. Ledger Entry,
GroupFooter (2) section:

IF IsDatePrinted THEN
CurrReport.SHOWOUTPUT(FALSE)

ELSE BEGIN

CurrReport.SHOWOUTPUT(TRUE);
IsDatePrinted := TRUE;

END

These two pieces of code ensure that:

• When a new iteration of the Cust. Ledger Entry data item begins, a date is not
printed.

• If the loop generates any output at all, only the second GroupFooter section
(containing the Date text box) is included as output in the first iteration.

• If additional output is generated, only the first GroupFooter section (without the
Date text box) is printed.

Calculating the Grand Total Amount and the Grand Total Quantity
To complete this report you must ensure that it displays the total number of
documents posted as well as the grand total of the amount posted in the period
covered by the report. It should display this information at the end of the report – in
the Date Footer (2) section.

The next task is to calculate the grand total of all the amounts that are printed in the
report. However, these amounts come from the Cust. Ledger Entry data item, not the
Date data item. This means that you cannot use the TotalFields property of the Date
data item to do the totaling.
260

14.3 Advanced Sample Reports
To calculate these grand totals:

1 Declare two global variables: GrandTotalAmount and GrandTotalQty of data type
Decimal and Integer respectively:

2 Add the following lines of code to the OnAfterGetRecord trigger of the Cust. Ledger
Entry data item:

GrandTotalQty := GrandTotalQty + 1;
GrandTotalAmount := GrandTotalAmount + Amount;

The first line simply adds one to the GrandTotalQty variable whenever a record is
retrieved, while the second line adds the retrieved Amount to the
GrandTotalAmount.

3 Open the Section Designer and add two text boxes to the Date, Footer (2) section.

4 The first text box will be used to calculate the total number of documents in the
report.

Place it under the other Qty fields and open the Properties window of the text box.

5 In the Value field of the SourceExpr property, click the AssistButton k to open the
C/AL Symbol Menu window.

6 Select the GrandTotalQty variable that you just defined.

7 The second text box will be used to calculate the grand total of the amounts
displayed in the report.

Place it under the other Amount fields and open the Properties window of the text
box.

8 In the Value field of the SourceExpr property, click the AssistButton k to open the
C/AL Symbol Menu window.

9 Select the GrandTotalAmount variable that you just defined.

This text box will now display the grand total of all the amounts in the report.

10Add a label to the Date, Footer (2) section and place it under the Total field in the
Cust. Ledger Entry, Footer (3) section.

11Change the caption of this label to Total.
261

Chapter 14. Extending Report Functionality
The Date, Footer (2) section will now contain the grand totals for the report.

Printing the Selected Range of Dates
The posting dates are used as a kind of header in the left margin of the report, so the
report would look good if the final line could display the range of dates that the user
selected before they ran the report.

This is easy to implement:

1 Create a variable called DateFilter and define its data type as Text, with a length of
100.

2 Add the following C/AL code to the OnPreReport trigger of the report:

DateFilter := Date.GETFILTER("Period Start");

3 Add a text box to the footer section of the Date data item, open the Properties
window of the text box and enter DateFilter as its source expression.

When the OnPreReport trigger is executed, the RequestForm has already been run. The
GETFILTER function returns any filters on the field, which are passed as an argument,
as a text string.

The report should be finished at this stage and the Section Designer window should
look something like this:
262

14.3 Advanced Sample Reports
The C/AL Globals window should look something like this:

The final report When you run the final report with the sample data, it should look something like this:
263

Chapter 14. Extending Report Functionality
14.4 Creating a Simple Document

This section describes how to use the Report Designer to create a document. The
example used is a simple sales invoice that does not take the complexities of VAT
calculations into account and does not test a number of conditions that would have to
be tested in a real-life situation. Furthermore, it does not print out all the information
you would expect to find on an invoice.

Defining the Data Model
The two primary tables involved in creating a sales invoice are the Sales Invoice
Header and the Sales Invoice Line tables. Some supporting tables are used to expand
the codes used in the invoice tables to more descriptive texts (Payment Terms,
Shipment Method), and the Company Information table is used to retrieve
information about the company that is preparing the invoice.

The Sales Invoice Header table contains general information about each sales invoice
that has been posted, while the Sales Invoice Line table contains the individual lines
that make up each invoice. The tables are related through a field that is called No. in
the header table (it is the primary key of this table) and Document No. in the lines
table.

To define the data model:

1 Open the Object Designer and create a new blank report.

2 In the Report Designer, create a data item, based on the Sales Invoice Header
table.

3 Create another data item, based on the Sales Invoice Line table, and indent this
data item one level.

4 Open the Properties window of the Sales Invoice Line data item (SHIFT+F4). By
default, the DataItemLinkReference property of the Sales Invoice Line data item
points to the Sales Invoice Header data item. Leave it like this, and set the value of
DataItemLink property to Document No.=FIELD(No.).

5 Enter the Amount field as the value of the TotalFields property of the Sales Invoice
Line data item. This calculates the total amount for all the lines in the invoice.

The Properties window of the Sales Invoice Line data item should now look like this:
264

14.4 Creating a Simple Document
6 Finally, change to the Properties window of the Sales Invoice Header data item.
Enter the No. field as the value of the ReqFilterFields property. This lets the users of
the report select a posted invoice to print.

The data model has now been defined.

In this report, some supporting variables are needed to access information from tables
that cannot be fitted into the data model.
265

Chapter 14. Extending Report Functionality
To create the variables:

1 Click View, C/AL Globals.

2 Declare the variables as shown in the following picture:
å

3 The two last variables must be declared as arrays. Open the Properties window of
each variable and set Dimensions to 6 for the variable called CustAddr, and to 4 for
the variable called CompAddr.

The data model has now been defined. Next, a small amount of C/AL code must be
added to the report triggers.

Using the Triggers
This basic version of the report needs a very limited amount of C/AL code in order to
function correctly.

The code must be entered in the triggers of the Sales Invoice Header data item.

To enter the code:

1 Select the Sales Invoice Header data item and click View, C/AL Code (F9).
266

14.4 Creating a Simple Document
The following picture contains all the code that is needed:

The code in the OnPreDataItem trigger works as follows:

• The first line, CompInfo.GET, retrieves a record – in fact, the only record – from the
Company Information table.

• The next four lines assign the contents of a field in the record in the Company
Information table to an element of the CompAddr array.

• The final line of the OnPreDataItem trigger uses the COMPRESSARRAY function with
the CompAddr array as an argument to eliminate empty elements from the array.
You do this because you cannot be certain that all the fields in the retrieved record
contain values. If you just printed each field on a separate line, an empty field would
cause an empty line to be printed.

The code in the OnAfterGetRecord trigger works like this:

• The first six lines assign values from the record in the Sales Invoice Line data item to
elements of the CustAddr array.

• After this, COMPRESSARRAY is used to eliminate empty elements from the array as
described earlier.

• The last two lines use the GET function (with the codes for Payment Terms and
Shipment Method from the Sales Invoice Header record as arguments) to retrieve
the related records from the Payment Terms and Shipment Method tables. When
you design the sections, the full text descriptions can then be extracted from these
records.

Designing the Sections
Now that you have defined the data model and written C/AL code to retrieve
supporting information, you can design the sections.
267

Chapter 14. Extending Report Functionality
The following picture shows the Section Designer after the necessary sections have
been inserted and the relevant controls added to the sections:

In the Header section of the Sales Invoice Header data item, you should notice the
following points:

Six text boxes have been inserted with CustAddr[1]..CustAddr[6] as source
expressions. If you compare it with the document reproduced next, you will see that in
this particular invoice only four of these array elements contain data. Using
COMPRESSARRAY has removed the empty fields and tightened up the data, so to speak.

• Similarly, in the invoice shown next, only three of the four elements of the
CompAddr array contain data.

• The text box that prints the posting date does not have the Posting Date as its
direct source expression. Instead, the source expression is the C/AL expression
FORMAT("Posting Date",0,4), which, in the example here, formats the date as
22. January 2001.

• In the Footer section of the Sales Invoice Line data item, the Amount field is a
totaled field, containing the total of all the amounts printed in the Body sections.

• In the same section, the full text descriptions of Payment Terms and Shipment
Method are printed using:

"Sales Invoice Header"."Payment Terms Code"

and

"Sales Invoice Header"."Shipment Method.Code"

as the source expressions, respectively.
268

14.4 Creating a Simple Document
This is how the invoice document looks when sample data is used:
269

Chapter 14. Extending Report Functionality
14.5 Creating a Nonprinting Report

The last report that you are going to create is a non-printing report. Although you can
achieve the same functionality by writing a codeunit, there are several good reasons for
using non-printing reports whenever you can:

• The functionality that is available through a request form (that prompts for options
and filters) is achieved with little effort, while recreating this functionality in a
codeunit is a considerable task involving a deal of C/AL code.

• Using the features of the Report Designer to prompt for options and to set filters
ensures consistency in the application that you are creating.

• Instead of writing C/AL code to open tables and retrieve records, you just define a
data item.

This report is a simple one: it adjusts prices in the Item table. Users can set filters on
some of the fields in the table to select a range of items by number, by posting group
or by vendor, and can choose the factor by which to adjust the prices.

Defining the Data Model
This report has one data item, based on the Item table.

To define the data model:

1 Open the Report Designer and create a new blank report.

2 Create a data item based on the Item table.

3 Open the Properties window of the report and set the value of the ProcessingOnly
property of the report to Yes.

4 Open the Properties window of the data item and use the AssistButton k to set the
value of the DataItemTableView property to No.. Though this is not strictly necessary
for the functionality of the report, it removes the Sort ... button from the request
form that is presented to the user when they want to run the report. As the report
will not print anything, the order in which the system runs through the data items is
irrelevant.

5 Use the AssistButton k in ReqFilterFields property to select the fields that the users
can filter by:
270

14.5 Creating a Nonprinting Report
6 Declare the following three variables:

• The Window variable, of data type Dialog, prints a screen message.
• The Adjustment variable is used for the value that the users enter in the request

form.
• NewPrice is used to store an intermediate result.

Creating the Request Form
In the previous procedure you created a request form that contains a tab where you
can set filters on some of the fields in the data item. You must now add an Options tab,
where you can define the adjustment factor.

To create an Options tab:

1 Click View, Request Form to open the Request Options Form Designer.

2 Add a text box with a label to the form (to have the label added automatically, click
the Add Label button in the Toolbox before selecting the Text Box tool).

3 In the Properties window of the text box, set the value of the SourceExpr property
to Adjustment, the variable you have just created:

Using the Triggers
Now that you have defined the data model and designed the request form, add a small
amount of C/AL code to the triggers of the Item data item to perform the actual price
adjustment.
271

Chapter 14. Extending Report Functionality
The following picture shows all the necessary C/AL code:

The code works like this:

• The first statement in the OnPreDataItem trigger opens a progress window that
shows the progress of the report as it is run. Because the report is non-printing, the
usual printing progress window is not shown. If the table is large, the report may run
for a while. Therefore, it is a good idea to tell the user that something is happening
and give them an idea of how it is progressing.

• The first statement in the OnAfterGetRecord trigger enters the item number in the
window each time a new record has been retrieved.

• The second statement in the OnPreDataItem simply ends the report without doing
any processing if the adjustment factor is 0 (zero). If the adjustment factor were
allowed to be zero, all the prices in the table would be set to zero and this would
never be the intention. The statement used here is a crude way of handling this. In a
more polished version, you would, for example, have a chance to reenter the
adjustment factor (or be notified of the reason for quitting the report).

• The last three lines in the OnAfterGetRecord trigger actually update the prices. First,
the adjusted value is assigned to the NewPrice variable. Then, the VALIDATE
function of the Unit Price field is used to update the price. In this way, any special
processing (for example, updating of related fields) in the OnValidate trigger of the
table field is performed. Finally, the MODIFY function is used to commit the change.

When you run this report the request form looks like this:

In the Filter field for No., use the AssistButtonp to specify the item whose price you
want to change.
272

14.5 Creating a Nonprinting Report
In the Filter field for Inventory Posting Group, use the AssistButtonp to specify the
posting group of the item whose price you want to change.

In the Filter field for Vendor No. use the AssistButtonp to specify the Vendor of the
item whose price you want to change.

On the Options tab, specify the amount by which you want to change the price.
273

Chapter 14. Extending Report Functionality
14.6 Types of Report

In this section, you learn about the types of reports that are found in a normal
functional area. The types of reports are not nearly as formal as the types of forms or
tables. This is just a brief outline that will help you understand the system architecture.

List Reports
A list report contains a single data item that corresponds to the table that is listed. The
table can either be a Master table or a Supplemental table.

Each column contains a field from the table, and the data is printed from that table, not
brought in from other tables or calculated from other tables.

The name of the report is usually the name of the table followed by the word "List".

Examples:

• Customer - List
• Insurance - List
• Vendor - List

Test Reports
A test report is a report that is printed from a Journal table. Its purpose is to test each of
the lines in the journal according to the same criteria that will be used for Posting. This
ensures that any errors that exist can be found and fixed before the lines are posted.

This is useful because if an error is found during posting, processing stops and the error
must be fixed before posting can be resumed. Running a test report is a good way to
identify these errors.

The name of the report is usually the name of the corresponding Journal form followed
by the word "Test".

Examples:

• General Journal - Test
• Resource Journal - Test

Posting Reports
A posting report can be printed as part of the "post and print" option on a Journal. It is
actually a report that is printed from the Register, and has the same name as that
Register. It lists all the transactions (that is, Ledger Entries) that have been posted into
that Register.

Examples:

• G/L Register
• Vendor Register

Transaction Reports
A Transaction report contains two data items. The first is a master table, and the second
is the corresponding ledger table. Normally, a transaction report lists all of the ledger
entries for each record in the ledger table. Normally, there is a subtotal for each master
table record, and a grand total for all the tables that are printed.
274

14.6 Types of Report
This type of report is used to view all the transactions for a particular master record.
There is no standard name for this kind of report.

Examples:

• Trial Balance
• Vendor - Trial Balance

Other "Normal" Reports
Reports are more loosely defined than other application objects because they are so
often customized for a particular client. However, most reports do consist of a tabular
list with records listed horizontally and each field displaying in its own column. There is
often some sort of group heading or total to split the lines among various categories
and subtotal the lines according to the categories.

Examples:

• Vendor Information
• Item Sales by Customer

Document Reports
Document reports are different from most other reports, in that, many of the fields are
not displayed in columns.

An example of this kind of report is an Invoice, where the header information is printed
as though filling out an invoice document and this header information is repeated at
the top of each page and no page contains information from more than one header.

The lines for the invoice are printed out like a normal report in rows and columns. The
lines correspond to the header on the same page, and lines from different invoices are
not displayed on the same page.

Examples:

• Sales Invoice No.s
• Purchase Invoice No.s
275

Chapter 14. Extending Report Functionality
276

Part 6
Codeunits

Chapter 15

Codeunit Fundamentals

This chapter explains what a C/SIDE codeunit is and how to
create one. It also shows you how to use the functions in a
codeunit from other application objects.

· What Is a C/SIDE Codeunit?

· Creating Codeunits

· Using Codeunits

Chapter 15. Codeunit Fundamentals
15.1 What Is a C/SIDE Codeunit?

In earlier parts of this book you have seen examples of C/AL code used in forms. This
code was always stored in the form. In simple applications the normal approach is to
place the code in the object that calls the functions. However, as your application
grows, in both size and complexity, you will often find that you use the same functions
again and again in many different objects. Instead of declaring the same functions over
and over again, it would be useful if you only had to define them once. This is where
the codeunit comes in. A codeunit is a container for C/AL code that you can use in
many application objects.

In codeunits you can define:

Functions A function is a sequence of C/AL statements that you define to create new
functionality.

Local Variables Within each function you can define variables whose scope is limited
to the function in which they are defined. These are known as local variables.

Global Variables A global variable is a variable whose scope covers all the functions
in the codeunit.

Temporary Tables A temporary table is a table that is not stored in the database.
Temporary tables are used mainly as structured variables that hold data temporarily
while you work on it.

Each function you add to a codeunit is shown in a separate section when you view the
file in the C/AL Editor.

Every codeunit contains two default sections called Documentation and OnRun. In
the Documentation section, you can add descriptive information that covers such
things as the purpose of the codeunit, a version number and so on. In the OnRun
section, you can include code that you want the system to execute when the codeunit
is run.

When you add your
own functions they
are shown here
280

15.1 What Is a C/SIDE Codeunit?
Codeunits Contain Functions But Can Also Be Run

Besides being a container for functions that can be run individually, a codeunit can
itself be run by writing <Codeunitname>.Run. When you run a codeunit, it is the code
in the OnRun section of the codeunit that is executed.
281

Chapter 15. Codeunit Fundamentals
15.2 Creating Codeunits

You use the Object Designer to create a new codeunit or to modify an existing
codeunit.

To create a codeunit:

1 Open the Object Designer (SHIFT+F12) and click Codeunit.

2 Click New to create a new codeunit. The C/AL Editor opens and this is where you can
create functions.

To modify an existing codeunit:

1 Open the Object Designer (SHIFT+F12) and click Codeunit

2 Select the codeunit you want to modify and click Design. The C/AL Editor opens and
you can modify the codeunit by changing the existing functions or adding new
functions.

Using the C/AL Editor
The C/AL Editor is designed to make it easy to create and modify C/AL code. When you
are working in the C/AL Editor, you have access to the C/AL Symbol Menu that helps
you define C/AL functions. From the C/AL Symbol Menu, you can get help about all the
C/AL commands. Select the C/AL function name in the column to the right and press
F1. Read more about the C/AL Symbols Menu in the section "Using the C/AL Symbol
Menu" on page 287.

When you create a codeunit, the C/AL Editor contains the two default sections
described earlier (the Documentation and the OnRun sections).

You can open as many codeunits as you like. Each time you create a new codeunit or
open an existing one, it is displayed in a separate window. This makes it easy to cut and
paste lines of code between the codeunits.

If you have used other Windows editors, you'll find the C/AL Editor easy to use. You can
access the editing functions - Cut, Copy and Paste from either the Edit menu or by
using the buttons on the toolbar. You can also use the standard shortcut keys:

Defining Variables, Text Constants and Functions in Codeunits
After you create a new codeunit, the next step is to define the global variables, text
constants and functions that you need in the codeunit. You use the C/AL Globals tool

To... Press...

cut the selected text to the clipboard. CTRL+X

copy the selected text to clipboard. CTRL+C

paste the text at the clipboard into the codeunit at the cursor position. CTRL+V

open the Find window to search for trigger names. CTRL+F
282

15.2 Creating Codeunits
for this. To access the C/AL Globals tool, make sure that the focus is on the C/AL Editor
and click View, C/AL Globals and the C/AL Globals window opens:

In the C/AL Globals window, you must decide whether you want to add a global
variable, a text constant or a function.

Global variables To add a global variable:

1 Click the Variables tab in the C/AL Globals window.

2 Enter a name and select a data type. If the data type you select corresponds to an
application object, you must also select a subtype, that is, the name of a specific
object in the database.

If you select text or code, you must define a length for the variable (the default
length is 10 characters for code and 30 for text). If you select OCX or Automation,
you must add a subtype. This is described in Chapter 19 "Extending C/AL".

Text constants To add a text constant:

When you create a message for the user in the C/AL Editor you must:

1 Click the Text Constants tab in the C/AL Globals window:

2 In the first available Name field, enter the name of the new text constant.
283

Chapter 15. Codeunit Fundamentals
Note

There is no naming convention for the text constants. Using the unique ID for the name
is a suggestion but not a requirement.

3 Open the Properties window of the text constant.

A unique ID number has been automatically assigned to the text constant in the ID
field.

4 Copy the ID number to the Name field in the C/AL Globals window, for example
Text1001, if the ID number in the ID field is 1001.

5 In the ConstValue field, click the AssistButton k to open the Multilanguage Editor
window.

6 In the Language field, enter ENU for English (United States).

7 In the Value field, enter the message string that this text constant represents.

8 Click OK to exit. If you do not click OK, the information is not saved.

9 In the C/AL Editor, copy the ID number to the place where you want the message or
error message to appear.

Example

IF FileName = ' ' THEN

ERROR(Text1001);

Text1001 is a number that is available in the text constants number series for that object.

In the C/AL Editor, when you move the cursor into the new text constant, you see its
contents in the status bar.

Note

If you remembered to set the application language to English (United States) before
entering the Object Designer, you can enter the message string directly into the
ConstValue field in the C/AL Globals window. Then you should open the
Multilanguage Editor to make sure that the text is saved as English (United States).
284

15.2 Creating Codeunits
Functions To add a function:

1 Click the Functions tab in the C/AL Globals window:

2 Enter a name for each function that you want to add.

3 Click Locals to define the parameters, return value, local variables and text constants
for each function. The C/AL Locals window opens:

4 You must specify the calling method, name, and data type of each parameter. You
can also specify a subtype and a length, but this is optional.

The calling method can be specified as Var, which means that the parameter is
passed by reference rather than by value. The value of a variable can only be
changed by a function when it is passed to the function by reference. When the
parameter is not specified as Var, only a copy of the variable is passed to the
function. If the function changes that value, the change only affects the copy and
not the variable itself.

If the type you select corresponds to an application object, you must also add a
subtype, that is, the name of a specific object in the database. If you select text or
code you have to define a length for it (the default length is 10 characters for code,
and 30 for text).
285

Chapter 15. Codeunit Fundamentals
5 Click the Return Value tab to define the return value for your new function.

6 Enter a name for the return value and select a data type from the drop-down list.
You can also select a length, but only if the type is text or code.

7 Click the Variables tab in order to define local variables:

8 For each local variable, you must enter a name and select a data type. If the data
type you select corresponds to an application object, you must also add a subtype,
that is, the name of a specific object in the database. If you select text or code, you
must define a length for the variable (the default length is 10 characters for code
and 30 for text).

9 Click the Text Constants tab to define text constants for the function.
286

15.2 Creating Codeunits
Using the C/AL Symbol Menu
When you write C/AL code in the C/AL Editor, you can use the C/AL Symbol Menu
window to get an overview of:

• All the variables defined in the codeunit
• All the C/AL functions

The C/AL Symbol Menu window is divided into three columns:

• The column to the left lists the names of the variables (if you have defined any) and
the function categories.

• The second column lists the subcategories.
• The third column lists the functions in the category you selected.

You can see the syntax and other information, such as the Caption property
corresponding to the field name you have selected, in the bottom left-hand corner of
the window. For more information about the FieldCaption subcategory, see page 473.

In some cases, for example when a control on a form is a subform or when a field is a
BLOB field, there are more than three columns.

In the C/AL Symbol Menu, click OK or Apply to paste the syntax description into the
C/AL Editor. When you click OK, the C/AL Symbol Menu window is closed
automatically; when you click Apply, the window stays open.

If you need help with any of the C/AL functions shown in the column to the right, select
the function name and press F1 to activate the context-sensitive C/SIDE Reference
Guide online Help.

Compiling and Saving Codeunits
Before you can run the functions in a codeunit, you must save and compile the code.
When you compile the code, the system checks the syntax of the statements. If the
compiler finds any errors in the code it displays an error message.

To compile the code in a codeunit:

1 Click Tools, Compile.

2 If the system finds any errors in your code, you receive an error message. Correct the
errors and compile the code again.
287

Chapter 15. Codeunit Fundamentals
To save the codeunit:

1 Click File, Save and C/SIDE displays the Save As window.

2 Enter an ID number and a name. The number is used as a unique identification,
while the name serves as a label.

3 Select whether or not you want the system to compile the code before it is saved.

If you save the codeunit without compiling it, you won't be able to run it or call any of
the functions it contains.

Why Save without Compiling?

If you are working on a large and complicated codeunit, you may want to save your
work at regular intervals, even though it is not yet finished and cannot yet be compiled.
In this case, you have to remove the check mark from the Compiled box before you
save the codeunit.
288

15.3 Using Codeunits
15.3 Using Codeunits

When you use codeunits, you eliminate the need to duplicate code and at the same
time make the code easier to maintain. If you use the same code repeatedly in your
forms or reports, you should create a function in a codeunit. When you have created a
function in a codeunit you can access it by writing:

<CodeunitName>.<FunctionName>

Example

Assume that you have created a codeunit that contains two statistical functions named F and G. The
following example shows you how to access these functions from a form.

This method is generally applicable. That is, from any application object you can access
functions in other application objects by writing the name of the application object
that contains the function followed by the name of the function.

You can access codeunits through codeunit variables – either by explicitly declaring a
variable with the data type codeunit or by setting the RunObject property on forms to a
codeunit. A codeunit variable does not contain a codeunit, but only a reference to a
codeunit. More than one codeunit variable can refer to the same codeunit as shown in
the following figure:

Codeunits contain internal variables that are defined as global variables. These
variables cannot be accessed directly from code outside the codeunit, but they can be
accessed through user-defined functions on the codeunit. Whenever a codeunit
variable is used for the first time, a new instance of the codeunit is created, that is, a

Codeunit named StatFun

Any form

F(x:integer)
Begin

...

End
G(x:integer)

Begin
...

End

...

Result :=

StatFun.F(3425)+StatFun.G(346);
...

variables
GlobalCU

CU Variable 1 CU Variable 2
289

Chapter 15. Codeunit Fundamentals
new set of internal variables is initialized so that different codeunit variables use
different sets of internal variables.

Codeunit assignment Codeunits can be treated as objects – one codeunit variable can be assigned to another
codeunit variable, which creates a new reference to the same codeunit instance. In
other words, the codeunit variables then use the same set of internal variables.

In this example, you create two codeunits:

• one codeunit that has two functions Set and Get. Set sets an internal variable to
the value of the parameter given. Get returns the value of the internal variable.
and

• one codeunit that has two variables that call the first codeunit and are then assigned
to each other so that they use the same instance of the first codeunit.

To create the first codeunit:

1 Create a new codeunit and open the C/AL Globals window.

2 Declare a variable called InternalInt of data type Integer.

3 In the C/AL GLobals window, click the Functions tab and create two functions
called Set and Get.

4 Select the Set function and click Locals to open the C/AL Locals window.

5 In the C/AL Locals window, click the Parameters tab and create a parameter called
input of data type Integer and click OK.

6 In the C/AL GLobals window, select the Get function and click Locals to open the
C/AL Locals window.
290

15.3 Using Codeunits
7 In the C/AL Locals window, click the Return Value tab and create a return value
called out of return type Integer and click OK.

8 In the C/AL Editor for the codeunit, two new sections have been added – one for
each of the functions that you just created. Enter the following code in the C/AL
Editor:

The code in the Set function increases the value of the input by one and sets this as
the value of the internal variable. It then calls the Get function which specifies that
this new value is the output value generated by this codeunit

9 Save and compile the codeunit. In this example it has been saved as codeunit 70000
and called ’Set_Get’.

The next step is to create the codeunit that calls two instances of the Set_Get codeunit
and supplies the input values that these instances should use. This codeunit contains
two variables and these are then assigned to each other so that they both use the same
instance of codeunit 70000.

To create the second codeunit:

1 Create a new codeunit and open the C/AL Globals window.
291

Chapter 15. Codeunit Fundamentals
2 In the C/AL Locals window, create the following two variables:

These two variables both call the Set_Get codeunit.

3 Add the following code to the OnRun trigger

CoMIC1.Set(1);

CoMIC2.Set(2);

//Calls two instances of codeunit 70000 with the input parameters 1
and 2 respectively.

MESSAGE('When running two instances, the value of CoMIC1 is %1 and
the value of CoMIC2 is %2.',CoMIC1.Get,CoMIC2.Get);

//The message retrieves the return values from codeunit 70000 and

shows them in the message.

//CoMIC2 returns 2; ComIC2 returns 3, because you have added 1 to

each parameter.

CoMIC2 := CoMIC1;

//CoMIC2 is assigned to CoMIC1 and they both use the same instance of
codeunit 70000.

MESSAGE('After assinging CoMIC2 to CoMIC1, the value of CoMIC1 is %1

and the value of CoMIC2 is also %2.',CoMIC1.Get,CoMIC2.Get);

//CoMIC1 and CoMIC2 now show the same value.

The first statement in this codeunit calls two instances of the Set_Get codeunit and
supplies the input values that these instances should use. The next statement assigns
the two variables to each other so that they both use the same instance of codeunit
70000 and therefore generate the same return value.

4 Save and compile the codeunit. In this example it has been saved as codeunit 70001
and called ’Assignment’.

CLEAR on codeunits When you use the CLEAR function on a codeunit variable that has a reference to a
codeunit instance with two or more references, CLEAR only deletes the reference to the
codeunit and not the actual instance of the codeunit. In other words, the codeunit stays
292

15.3 Using Codeunits
intact and can still be used by other codeunit variables that may have been assigned a
reference to this codeunit.

To delete an instance of a codeunit, you must clear all the references to the codeunit
with the CLEAR function. To clear the internal variables in a codeunit, you must call the
CLEARALL function from a user-defined function within the codeunit. A local codeunit
variable is automatically cleared when it goes out of scope and is no longer used by the
codeunit.

Single instance
codeunit

In some cases, only one instance of a codeunit needs to exist. This means that all the
codeunit variables of a particular codeunit use the same set of variables. When you set
the SingleInstance property of the codeunit to Yes, all the codeunit variables of that
codeunit use the same instance, thereby allowing you to create global variables.

Note

We recommended that you avoid using global variables for most types of code.
However, in certain situations, it may be necessary to use them, for example, to make
sure that you are only using one instance of an external variable.

A single instance codeunit is instantiated when you use it for the first time. Normal
codeunit instances (codeunits that do not have the SingleInstance property set) are
deleted whenever the last codeunit variable that uses that codeunit instance goes out
of scope. However, single instance codeunits remain instantiated until you close the
company.

Example

Open Codeunit 70000 that you created earlier in this chapter and set the SingleInstance property to
Yes. Save it as codeunit 70002 and call it SingleInst.

Open codeunit 70000 again and create two variables:

In codeunit 70000 add the following code to the OnRun trigger:

CoMIC1.Set(7);

//a codeunit instance is created if one did not exist

CoMIC2.Get();
//returns 8, that is 7 + the 1 added by the set function in codeunit

70002. CoMIC2 uses the same instance as CoMIC1, they use the same

internal variables.

MESSAGE('the value of CoMIC2 is %1',CoMIC2.Get);

Variable Data Type Subtype

CoMIC1 Codeunit SingleInst

CoMIC2 Codeunit SingleInst
293

Chapter 15. Codeunit Fundamentals
Now, when you run codeunit 70000, you see the following message:

The input value in codeunit 70000 is 7 and codeunit 70002 adds 1 to this value.

Now open codeunit 70002 and change the value in the set trigger to, for example,
input+4. Close, save and compile codeunit 70002.

Now run codeunit 70000 and you still get the same message as before. This occurs
because once you have loaded a single instance codeunit it remains loaded on the
client until you restart the client.

Note

It is possible to use a single instance codeunit across objects and not only within the
same object.

Limitations on Codeunits
Global variables and temporary tables in a codeunit cannot be accessed directly from
other application objects. The only way to access these values is through the functions
you have created in the codeunit.

Every C/AL function can be used in a codeunit. However, you cannot create a function
with the same name as a pre-defined function. Neither can two or more user-defined
functions have the same name (unless they are part of different application objects).
294

Chapter 16

Introducing the C/AL Language

This chapter introduces the C/AL language. It describes how
to use the language to create functions, as well as describing
the syntax of the language.

· What Can You Do with C/AL?

· What Are Statements, Expressions, and Operators?

· Introducing the Elements of C/AL Expressions

· The C/AL Control Language

Chapter 16. Introducing the C/AL Language
16.1 What Can You Do with C/AL?

In the previous sections of this book you learned how to design some basic database
objects such as tables and forms. But simply getting these objects up and running is
not enough. To create a coherent application, you must make these database objects
work together. C/AL code is the glue that binds all the database objects together to
form a unified whole.

When you are designing professional applications you often need specialized
functions. C/AL lets you create functions that extend the functionality of C/SIDE. For
example, you can create special functions for use anywhere in the database.

The most important things that you can do with C/AL are:

Design Your Own Functions Although C/SIDE has a large number of in-built
functions, it will sometimes be necessary or perhaps just more convenient for you to
create your own functions. For example, you will need to develop your own functions
when the application you are developing repeatedly uses the same non-trivial
processing.

Connect Database Objects C/AL code glues your database objects together. C/AL
includes a number of commands that control how the individual database objects in
your application interact.

Read, Write and Modify Data C/AL includes standard functions for reading, writing
and modifying table data.
296

16.2 What Are Statements, Expressions, and Operators?
16.2 What Are Statements, Expressions, and Operators?

In this section, the following terms are introduced and explained:

• Statements
• Expressions
• Data types
• Operators

Consider the following C/AL code sample:

Amount := 34 + Total;

This individual code line is also called a statement. The following table illustrates how
the statement can be broken into smaller elements.

What Is a C/AL Expression?
An expression is a fundamental C/AL concept. This section describes expressions and
how they are used.

An expression can be used as an argument for a C/AL function. Consider the following
C/AL statement:

Date := DMY2DATE(31, 12, 2001);

This function takes three simple expressions as arguments, 31, 12 and 2001.

A C/AL expression is a group of characters (data values, variables, arrays, operators and
functions) that can be evaluated, with the result having an associated data type.

All the expressions in C/AL are built from:

• Constants
• Variables
• Operators
• Functions

Element Description

34 + Total An expression
In this case the expression consists of an arithmetic operator (+) and two
arguments (34 and Total), which also could be called sub-expressions. Every
valid C/AL expression can be evaluated to a specific value.

:= The assignment operator
When the expression on the right-hand side has been evaluated, this
operator is used to assign or store the value in the Amount variable.

Amount This is called a variable. It is used to reference a memory location where
data is stored.
297

Chapter 16. Introducing the C/AL Language
Depending on the elements in the expression, the evaluation results in a value with a
C/AL data type. The following table shows some typical expressions:

The first row shows a text string which is evaluated to itself. The second row evaluates
into a concatenation of the two strings. The third row shows a decimal number, which
is evaluated to itself. The expression in the fourth row contains a function, with which
the given argument is evaluated to the number 7234. The last row shows a comparison
between a variable and a numerical constant.

These examples show that when C/AL expressions are evaluated, the results have a
specific data type. The next section explains the C/AL data types in more detail.

Introducing the C/AL Data Types
As you have already seen, variables can be used to store data of various types. By
declaring variables of the correct type, you:

• create faster code.
• save space.
• avoid runtime errors due to overflow.
• avoid runtime errors caused by impossible type conversions.
For example, if you know that a variable will always contain a number between 0 and
700, you should use an integer variable instead of a decimal variable. Any calculations
that are performed will be faster because the system uses 4 bytes per integer operation
instead of the 12 bytes that decimal variables require. On the other hand, you must use
a data type that can hold every possible value that is needed in your calculations. For
example, if you try to store the value 1233.345 in an integer variable you will get a
runtime error.

Expression Evaluates to:

'Welcome to Hawaii' The string 'Welcome to Hawaii'

'Welcome' + ' to Hawaii' The string 'Welcome to Hawaii'

43.234 The number 43.234

ABS(-7234) The number 7234

len1 < 618 TRUE or FALSE depending on the value of len1
298

16.2 What Are Statements, Expressions, and Operators?
C/AL contains a wide range of data types. These data types can be divided into the
following categories:

Fundamental Data Types
C/AL contains a number of fundamental data types, which are designed to store
boolean values, numbers, text, time and dates.

Boolean The possible values are TRUE or FALSE.

Integer Used to store integers between -2,147,483,647 and 2,147,483,647.

BigInteger Used to store very large whole numbers.

Duration Used to represent the difference between two datetimes, in milliseconds.

Option This denotes an option value. Option values can freely be converted to
numeric ones. The values range from -2,147,483,647 to 2,147,483,647.

Example

Assume that Number is a numeric variable and that Type denotes a field of type Option in the
Purchase Header table. In the following statement, the option value is converted to a number:

Number := "Purchase Header".Type;

Fundamental

Complex

Binary
Boolean

Option
Integer
Decimal
Char

Time
Date

String

Numeric

 C/AL Data Types

BLOB
Table
Form
Codeunit
File
System
Dialog
Report
OCX
Automation
InStream
OutStream
Variant

Text

BigInteger
Duration

DateTime

DateFormula
GUID
TableFilter
Record
RecordID
RecordRef
FieldRef
KeyRef

Code

BigText
299

Chapter 16. Introducing the C/AL Language
Example

This example illustrates how the possible values of an option field can be used as constants in your
C/AL code:

"Purchase Header".Type := "Purchase Header".Type::Invoice;

Decimal Denotes decimal numbers ranging from -10+E63 to +10+E63. The exponent
ranges from -63 to +63. Decimal numbers are held in memory with 18 significant
digits.

Date Denotes dates ranging from January 1, 0 (the year zero) to December 31, 9999.
An undefined date is expressed as 0D. All dates have a corresponding closing date. The
closing date for a given date is regarded by the system as a period following the given
date but before the next normal date. A closing date is therefore sorted immediately
after the corresponding normal date but before the next normal date.

Time Denotes a time. An undefined time is expressed as 0T. Any time in the range
00:00:00 to 23:59:59.999 is valid.

DateTime Denotes a date and the time of day.

The datetime is stored in the database as Coordinated Universal Time (UTC). UTC is the
international time standard (formerly Greenwich Mean Time, or GMT). Zero hours UTC
is midnight at 0 degrees longitude. The datetime is always displayed as local time in
Dynamics NAV. Local time is determined by the time zone regional settings used by
your computer.

You must always enter datetimes as local time. When you enter a datetime as local
time, it is converted to UTC using the current settings for the time zone and daylight
saving time.

There is only one constant available when you use this data type: undefined datetime.
DateTime := 0DT

• C/SIDE Database Server
The earliest permitted datetime is January 1, 0000, 00:00:00.000.

The latest permitted datetime is December 31, 9999, 23:59:59.999.

• SQL Server

The earliest permitted datetime is January 1, 1754, 00:00:00.000.

The latest permitted datetime is December 31, 9999, 23:59:59.999.

Any datetimes that are not within this range and that you try to enter or construct
by, for example, adding a datetime to a duration, are regarded as undefined
datetimes and give an error message.

Undefined dates are stored as January 1, 1753, 00:00:00.000.

Char Stores a single character as a value in the range 0 to 255. This data type can be
freely converted between a number and a character. This means that you can use the
same mathematical operators as you can with a variable of a numerical data type.
300

16.2 What Are Statements, Expressions, and Operators?
Example

You can assign a constant string of the length 1 to a char variable:

C := "A";

Example

You can also assign a single char in a text, code or binary data type variable to a char variable:

C := S[2];

Note

When you use the text and code data types, it is important to distinguish between the
maximum length of the string and the actual length of the string. The maximum length
can be seen as the upper limit for the number of characters in the string, while the
actual length describes the number of characters used in the string.

Text Denotes a text string. The length of the string ranges from 1 to 1024 characters.
You can index any character position in a string – for example A[65] refers to the 65th
character in the variable called A. The resulting values will be of data type char. The
length of a variable of data type text corresponds to the number of characters in the
text. For example, an empty text string has length 0.

The following table illustrates some typical examples of text strings. In the following
examples it is assumed that the variable t is of data type text and has a maximum
length of 6:

Code Denotes a special type of text string. When a given text is assigned to a variable
of data type code, the text is changed to uppercase, and any leading and trailing
spaces are removed. You can index any character position in a string – for example,
A[65]. The resulting values will be of the char data type. The maximum length of a
variable of data type code ranges from 1 to 250 characters. The length of a variable of
data type code always corresponds to the number of characters in the text without
leading and trailing spaces.

Example

The following table shows some typical examples of code string assignments. In these examples, it is
assumed that the variable c is of data type Code, and has a maximum length of 4:

Assignment Results in...

t := 'AbC'; The variable t now contains "AbC".

t := '123456abx'; Results in a runtime error because the length (9) exceeds the maximum
length (6).

Assignment The variable c now contains... The length is...

c := 'AbC'; 'ABC' 3

c := '1'; '1' 1

c := ''; '' (empty string) 0 (zero)
301

Chapter 16. Introducing the C/AL Language
Descriptive Data types
The following table summarizes the correspondence between the descriptive data
types and the simple C/AL data types:

Complex Data Types
C/AL also contains a number of complex data types. Complex data types are used when
you need to work with, for example, records in tables, pictures (bitmaps) or disk files. As
C/AL is object oriented, each complex data type can include both member variables
and member functions.

BLOB This is a Binary Large Object. Variables of this data type differ from normal
numeric and string data type variables in that they have a variable length. BLOBs are
used to store memos (text), bitmaps (pictures) or user-defined types. The maximum
size of a BLOB is normally determined by your system’s disk storage capacity, as the
upper limit is 2GB.

Record This is a complex data type, consisting of a number of simpler elements called
fields. A record corresponds to a row in a table. Each field in the record is used to store
values of a certain data type. The fields are accessed using the variable name of the
record (often the same as the name of the corresponding table), a dot (a period) and
the field name. A record is typically used to hold information about a fixed number of
properties.

Form Variables of this data type are used to store forms. This is a complex data type
and can contain a number of simpler elements called controls. Controls are used to
display information to the user or to receive user input.

Codeunit Variables of this data type are used to store codeunits. This is a complex
data type which can contain a number of user-defined functions.

File Variables of this data type give you access to operating system files.

Dialog Variables of this type are used to store dialog windows. A number of functions
are available for manipulating dialogs.

Report Variables of this data type are used to store reports. This is a complex data
type that can contain a number of simpler elements called controls. Controls are used
to display information to the user.

DateFormula Use this data type to contain a date formula that has the same
capabilities as an ordinary input string for the CALCDATE function. The DateFormula
data type is used to provide multilanguage capabilities to the CALCDATE function.

GUID Use this data type to give a unique identifying number to any database object.

c := ' 2 '; '2' 1

c := '1 2'; '1 2' 3

Assignment The variable c now contains... The length is...

Descriptive data type Includes these system data types...

Numeric char, integer, biginteger, duration, option, and decimal

String text and code
302

16.2 What Are Statements, Expressions, and Operators?
The Globally Unique Identifier (GUID) data type is a 16 byte binary data type. This data
type is used for the global identification of objects, programs, records and so on. The
most important property of a GUID is that each value is globally unique. The value is
generated by an algorithm, developed by Microsoft, which assures this uniqueness.

The GUID is a 16 byte binary data type and can be logically grouped into the following
subgroups: 4byte-2byte-2byte-2byte-6byte. The standard textual representation is
{12345678-1234-1234-1234-1234567890AB}.

TableFilter Use this data type to apply a filter to another table. At the moment, this
data type can only be used when you are setting security filters from the Permission
table.

RecordRef This complex data type identifies a row in a table. Each record consist of
fields (which form the columns of the table). A record is typically used to hold
information about a fixed number of properties.

The RecordRef object can refer to any table in the database. Use the RecordRef.OPEN
function to select the table you want to access. When you use the RecordRef.OPEN
function a new object is created. This object contains references to the open table,
filters and the record itself and all the fields it contains.

If one RecordRef variable is assigned to another RecordRef variable, they both refer to
the same table instance.

RecordID This complex data type contains the table number and the primary key of a
table. You can store a RecordID in the database but you cannot set filters on a
RecordID.

FieldRef This complex data type identifies a field in a table and gives you access to
this field. The fieldref object can refer to any field in any table in the database.

KeyRef This complex data type identifies a key in a table and the fields in this key.
This gives you access to the key and the fields it contains. The keyref object can refer to
any key in any table in the database

InStream and OutStream Variables of these data types enable you to read from or
write to files and BLOBs. In addition, you can use InStream and OutStream to read from
and write to objects of the Automation and OCX data types.

Variant This data type can contain the following C/AL data types: record, file, action,
codeunit, Automation, boolean, option, integer, decimal, char, text, code, date, time,
binary, DateFormula, TransactionType, InStream and OutStream.

BigText This complex data type is used to contain large text documents. Data of the
BigText data type cannot be displayed, in for example, the debugger or in a message
window. However, you can use the BigText functions to extract part of a big text and
place it in a normal text string that can be displayed.

The maximum length of a BigText variable is 2147483647 characters. This is the
equivalent of 2 Gb.

OCX and Automation See "Extending C/AL" on page 363.

For more information about these data types, see the C/SIDE Reference Guide online
Help.
303

Chapter 16. Introducing the C/AL Language
Creating Arrays of Variables
You can create 10-dimensional variables, using the simple and complex data types.
There are no limitations on how many elements a dimension can contain but an array
variable can never have more than 1,000,000 elements in all. The physical size of an
array is limited to 2 GB (or available memory). Arrays are always indexed with a number
for each dimension that ranges from 1 to (and including) the size of the dimension. If
you accidently index outside the range of the dimensions of an array, a runtime error
occurs.

Example

Assume that Foo is a one-dimensional array variable of data type Integer, with the dimension 10.

To index the first element, use Foo[1]. To index the last element, use Foo[10].

Example

Assume that Bar is an array variable of data type Date with the dimensions 2x3x4. Then Bar has 24
elements.

To index the first element, use Bar[1,1,1]. To index the last element, use Bar[2,3,4].
304

16.3 Introducing the Elements of C/AL Expressions
16.3 Introducing the Elements of C/AL Expressions

In the previous sections you were introduced to C/AL expressions and data types. The
aim of this section is to present the basic elements of C/AL expressions to you. The
following subsections will briefly discuss:

• Constants
• Variables
• Operators
• Functions

Constants
A constant is the simplest type of operand used in C/AL. The value of a constant cannot
be changed during the execution of the code. Constants can be defined for each of the
simple data types in C/AL.

Entering Values in C/SIDE

Beware that in the following examples, numbers such as 2,147,483,647 and
999,999,999,999,999.99 cannot be entered in the C/AL system in this form. The
commas are only used to increase the legibility of this document. If you use commas
when you enter numbers in the C/AL editor, a compilation error occurs.

boolean constant A boolean constant can have either the value TRUE or FALSE.

integer constant An integer constant has a value in the range
-2,147,483,647 to 2,147,483,647.

decimal constant A decimal constant must contain a decimal point "." (depending
on your regional settings) and have at least one digit to the right of the decimal point
(for example the digit "0"). A constant of type decimal can be used to represent
decimal numbers between -999,999,999,999,999.99 and 999,999,999,999,999.99 with
18 significant digits.

date constant A date constant is written as six or eight digits followed by the letter
"D" (the date constant expressing "undefined date" is, however, entered as "0D"). The
digits specify the date in the format MMDDYY or MMDDYYYY.

time constant A time constant is written as six or nine digits followed by the letter 'T'
(the "undefined time" constant is, however, entered as "0T"). The nine digits specify the
time in the format HHMMSS[.XXX], that is, a 24 hour format with an optional part
specifying thousandths of a second.

text constant A text constant is a character string. C/SIDE assigns unique IDs to text
constants, so that an ID number represents a specific text constant. Examples of text
constants are error messages, messages and warnings.

The following table illustrates different types of C/AL constants:

Constant Description

TRUE boolean constant
305

Chapter 16. Introducing the C/AL Language
Using Variables in C/AL
There are two types of variables in the C/AL system: user-defined variables and system-
defined variables.

User-defined
variables

User-defined variables are ones that you define when you create new C/AL code. You
can define variables that are global and apply to all the functions within a codeunit and
you can define variables that are local and apply to a single function in a codeunit.
Both types of user-defined variables are local to the codeunit in which they are defined.
These variables can be used to store information at runtime, and the values can be
changed as desired.

System-defined
variables

System-defined variables are provided by the system. These variables are automatically
maintained by the system. The system-defined variables are, for example, Rec, xRec,
CurrForm and CurrReport.

When the system is running, it executes code in functions and triggers, for example
entry-processing code for a table. Before the code is executed, the system
automatically assigns values to the associated system-defined variables, and the values
of these variables can be used in the triggers and the local functions.

When triggers and functions are executed, the system-defined variables can be used
just like normal variables (new values can be assigned to them). That is, the values of
the system-defined variables are not updated by the system while the C/AL code is
being executed, but only before the function or trigger is executed.

Note

The value in a system-defined variable does not propagate backwards. In other words
the user cannot use a system-defined variable to modify the state of the system.

Variable Names
There are numerous rules and restrictions that you must follow when naming variables:

• Variable names must be unique – a codeunit cannot contain two user-defined
variables with the same name.

• A user-defined and a system-defined variable cannot have the same name.
• Uppercase and lowercase letters are not distinct, that is, Smith and SMITH refer to

the same variable.
• In C/AL, you can use special characters (for example, spaces) in the name of a

variable (an identifier).
• The maximum length of a variable name is 30 characters.

50000 integer constant

-23.7 decimal constant

122101D date constant (December 21, 2001)

141230T time constant (the time 14:12:30)

ABC text constant

Constant Description
306

16.3 Introducing the Elements of C/AL Expressions
• A variable cannot have the same name as a C/AL function or a reserved word. Please
note that this rule applies to both uppercase and lowercase spellings. For example,
neither BEGIN nor begin is valid.

All ASCII characters are valid in variable names, except:

• Control characters (ASCII 0-31, 255)
• The character " (ASCII 34)

When you name a variable, be careful to note that characters cannot be combined
freely unless you encapsulate the variable name in double quotes, as in "Customer
No.". If you don’t, you should name variables like this:

The first character must be:

• a letter in the range: a..z, A..Z (ASCII 97-122, 65-90), or
• an underscore (ASCII 95),

...followed by a maximum of 29 characters, which can be either

• a letter a..z, A..Z (ASCII 97-122, 65-90)
• an underscore (ASCII 95), or
• digits in the range 0..9 (ASCII 48-57).

As mentioned earlier, you can include one or more special characters (spaces, and so
on) in a variable name in C/AL. However the entire variable name must be enclosed in
double quotes. In this case, the name can contain any mix of letters, digits and special
characters.

Note

The double quotes are not part of the variable name, but are necessary in order to
avoid receiving an error when you compile the codeunit.

Here are a number of examples showing valid variable names:

• Customer
• StockGroup1
• "@Vendor"
• "1st AddressLine"
• "Purchase/Sales"
• "Sales In GBP"
• " YesCrazy Name1Ñ3"

...and the following are examples of invalid variable names

• 34467
• 23"Tubes
• Stock Group4
• "Sale"s in GBP"
•)-Names
307

Chapter 16. Introducing the C/AL Language
• END

Initialization
Variables are automatically initialized before C/AL code is executed. A boolean variable
is set to FALSE and numeric variables are set to the default value zero, while strings
(text, code and so on) are initialized to the value '' (the empty string) and date and time
variables are set to the undefined time 0T and the undefined date 0D, respectively.

As mentioned earlier, the system automatically handles the system-defined variables.
This also includes the necessary initialization. This means that no actions are required
by the user before the system-defined variables can be used.

Assignment and Type Conversion
There are two ways to assign values:

• As parameter assignment, for example FUNCTION(Expression). The data type that
results from the evaluation of the expression must correspond to a specific data type
or have a data type that can be converted automatically to the correct data type. For
a detailed discussion about evaluation and type conversion in expressions, refer to
the chapter "Type Conversion in Expressions" on page 506.

• By using the assignment operator ":=" (for example Variable := Expression).
Generally, the data type that results from the evaluation of the right-hand side
expression must be the same data type as the variable (left operand) or have a data
type that can be converted automatically to the data type of the left operand.

Automatic type conversion in assignments takes place when:

• a parameter in a function call does not have the correct data type. This happens, for
instance, if a function that is supposed to be called with an integer argument is
called with, for example, a decimal argument.

• the evaluation of the expression on the right-hand side of an assignment operator
(:=) results in a data type that differs from the data type of the variable on the left-
hand side.

Automatic type conversion in assignments can freely take place between the following
numeric data types, provided overflow does not occur:

Automatic type conversion in assignments can also freely take place between the
String data types:

All of these examples are based on simple variables. Nevertheless, the same assignment
rules apply for arrays in C/AL. Furthermore, if the left operand in an assignment (the
variable) is an array, the dimension(s) of the right-hand expression must correspond to
the dimension(s) of the variable.

Text can be easily be converted to bigtext but a bigtext must be broken up into smaller
parts before it can be converted to text.

char integer decimal

code text

text bigtext
308

16.3 Introducing the Elements of C/AL Expressions
Note

The type conversion that takes place in assignments can cause runtime errors even
though the data types are convertible. A runtime error can occur in an assignment if
the converted value is outside the valid range for the left-hand side variable.
Correspondingly a runtime error can occur if the converted value is outside the valid
range for a parameter in a function call.

Example

Variable B is defined as a one-dimensional array with four text type elements with the maximum
length 15. A value could be assigned to the second element in the array as shown here:

B[2]:= 'Enter your name';

Example

Result is an option variable, while Amount and Total are both decimal variables.
Consider the following assignment statements:

Amount := 10;

Total := 4;
...

Result := Amount + Total;

This code can always be compiled, but a runtime error will occur if the result of the right-hand side
expression "Amount + Total" exceeds the range permitted by the data type of the left-hand side
variable Result, that is, outside the range -2,147,483,647 to 2,147,483,647.

Valid Assignments
The following tables shows whether it is possible to assign the value of an expression of
a given type to a variable of the same type or to a variable of a different type. These
tables only cover the numeric and string data types.
309

Chapter 16. Introducing the C/AL Language
Numeric Data Types:

String Data Types:

c The assignment is valid
i The assignment is valid, but overflow may occur

Note

Bigtext can be assigned by using the bigtext functions, for example, GETSUBTEXT.

Using Operators in C/AL
Operators can be used in expressions to combine, investigate and manipulate values
and data elements. This section describes the function of the operators in C/AL. The
following table shows the valid operators in C/AL:

Variable
Type

Expression Type

char option integer biginteger duration decimal

char c i i i i i

option c c c i i i

integer c c c i i i

biginteger c c c c c i

duration c c c c c i

decimal c c c i i c

Expression Type

Variable Type text code bigtext

text i i i

code i i i

bigtext i i i

C/AL operator Meaning

. Fields in records, controls in forms and reports

() Parentheses

[] Indexing

:: Scope

+ Addition

- Subtraction or negation

* Multiplication
310

16.3 Introducing the Elements of C/AL Expressions
The "+" and the "-" operators can be used both as unary and binary operators. The
"NOT" operator can only be used as an unary operator. All the other operators are
binary.

Most of the operators can be used on different data types. The action of these
operators may depend upon the data type of the expression that they are used on.
Here are some typical examples:

Example

The "+" operator used as a binary operator:

number + number

This returns the sum of the numbers, that is, a result of the type number.

Example

The "+" operator used as a binary operator:

string + string

This returns the concatenation of the strings, that is, a result of the type string.

Example

The "+" operator can be used as an unary operator to indicate sign, for instance:
+ 34545

For more information about the way each operator functions, see the chapter Type
Conversion Mechanisms on page 508, which explains the type conversion mechanisms
in C/AL.

/ Division

DIV Integer division

MOD Modulus

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

<> Not equal to

IN In range

AND Logical conjunction

OR Logical disjunction

NOT Logical negation

XOR Exclusive logical disjunction

.. Range

C/AL operator Meaning
311

Chapter 16. Introducing the C/AL Language
Operator Hierarchy
The operators that we have just discussed are organized in a hierarchy that determines
the order in which the operands in a given expression are evaluated. The following list
shows the order of precedence of the C/AL operators:

1 .(fields in records), [] (indexing), () (parentheses), :: (scope)

2 NOT, - (unary), + (unary)

3 *, /, DIV, MOD, AND, XOR

4 +, -, OR

5 >, <, >=, <=, =, <>, IN

6 .. (range)

The following examples illustrate how this hierarchy works in practice.

Although the expressions appear to be the same, they produce different results.

Example

The expression

2 + 3 * 4

is evaluated to 14, whereas the expression

(2 + 3) * 4

is evaluated to 20.

Function Calls
C/AL contains a number of functions that can be used for different purposes, such as
string handling, text formatting, database handling and so on. Some of these functions
can use a varying number of parameters.

In a function call, the parameters are separated by commas, and the optional
parameters may be omitted from the right. This means that if a function has, for
example, 3 optional parameters, then you cannot omit the second without omitting the
third.

Example

The fictitious function

FUNCTION([Optional1] [, Optional2] [, Optional3])

can be called as

FUNCTION(Optional1, Optional2)

but not as

FUNCTION(, Optional2, Optional3)
312

16.3 Introducing the Elements of C/AL Expressions
Example

ABS is a typical example of a C/AL function with a fixed number of parameters (1).

Value := -1033;{A negative integer value}

PositiveValue := ABS(Value);{Calculate the positive value 1033}

Example

The function DMY2DATE is a typical example of a function that can be called with a variable number
of parameters.

NewDate := DMY2DATE(5, 11, 1992);{Returns the date November 5, 1992}

Depending on the use of the DMY2DATE function, 1, 2 or 3 parameters can be passed to the
function, as the second and third parameter are optional. When the second and third parameters
are not used, the system uses values from the system date as default.
313

Chapter 16. Introducing the C/AL Language
16.4 The C/AL Control Language

This section describes the basic structures in the C/AL control language and how to use
them. All the C/AL programs that you create consist of one or more statements, which
are executed sequentially in top-down order. However, you will often need to control
the direct top-down flow of the execution. One or more statements may have to be
repeated a number of times, and in another situation you may have to make the
execution of a certain statement conditional.

The control structures in C/AL are divided into the following main groups:

• Compound Statements
• Conditional Statements
• Repetitive Statements
• WITH Statements

Compound Statements
In some cases, the C/AL syntax only allows you to use of a single statement. If however
you have to execute more than one simple statement, the statements can be turned
into a compound statement, by enclosing the statements between the keywords BEGIN
and END. The syntax is:

BEGIN

<Statement 1>;

<Statement 2>;
.

.

<Statement n>;
END

The individual statements are separated by a semicolon. In C/AL and Pascal a
semicolon is used to separate statements, and not, as in other programming languages,
as a terminator symbol for a statement. Nevertheless, an extra semicolon before an END
does not cause an error because it is interpreted by the compiler as an empty
statement.

The BEGIN END structure is also called a block. Blocks can be very useful in connection
with the other control structures to be discussed in the following.

Conditional Statements
By using a conditional statement, you can specify a condition and one or more
commands that should be executed, according to the evaluation of the condition:
TRUE or FALSE. There are two types of conditional statements in C/AL:

1 IF THEN [ELSE], when there are 2 choices.

2 CASE, when there are more than 2 choices.
314

16.4 The C/AL Control Language
The IF THEN ELSE Control Structure
IF THEN ELSE statements have the following syntax:

IF <Condition> THEN <Statement1> [ELSE <Statement2>]

which means

If <Condition> is true, <Statement1> is executed. If <Condition> is false,
<Statement2> is executed.

As defined earlier, the square brackets around ELSE <Statement2> mean that this
part of the statement is optional.

This statement is used when different actions are executed, depending on the
evaluation of the <Condition>.

You can build even more complex control structures by nesting IF THEN ELSE
statements. A typical example is:

IF <Condition1> THEN IF <Condition2> THEN <Statement1> ELSE

<Statement2>

If <Condition1> is false, nothing is executed. If <Condition1> and <Condition2>
are both true, <Statement1> is executed. If <Condition1> is true, and <Condition2>
is false, <Statement2> is executed. Please note that a semicolon preceding an ELSE is
not allowed.

Reading several nested IF THEN ELSE statements can be quite confusing but a
general rule is that an ELSE belongs to the last IF that lacks an ELSE.

Here are some examples of IF THEN ELSE statements:

Example

An IF statement without the optional ELSE part:

IF Amount < 1000 THEN Total := Total + Amount;

Example

(1)...
(2) IF Amount < 1000

(3) THEN BEGIN

(4) IF I > J THEN Max := I
(5) ELSE Max := J;

(6) Amount := Amount * Max;

(6) END
(7) ELSE

(8)...

A common error that is often made by inexperienced C/AL programmers is to put an extraneous
semicolon at the end of a line before an ELSE (line 4). As mentioned earlier, this is not valid
according to the syntax of C/AL, as the semicolon is used as a statement separator. (The end of line
4 is inside the inner IF statement).
315

Chapter 16. Introducing the C/AL Language
The CASE Control Structure
The syntax of the CASE statement is:

CASE <Expression> OF

<Value set 1> : <Statement 1>;
<Value set 2> : <Statement 2>;

...

...
<Value set n> : <Statement n>;

[ELSE <Statement n+1>]

END;

In this definition, <Expression> cannot be a record and <Value set> must be an
expression or a range.

CASE statements are also called multiple option statements and are typically used when
you must choose between more than two different actions. The function of the CASE
statement is as follows:

• The <Expression> is evaluated, and the first matching value set executes the
associated statement, if there is one.

• If none of the value sets matches the value of the expression, and the ELSE part has
been omitted, no action is taken; but if the optional ELSE part is used, then the
associated statement is executed.

The data type of the value sets must be the same as the data type of <Expression> or
at least be convertible to the same data type.

Note

The data type of the value sets is converted to the data type of the evaluated
<Expression>, if necessary. This type conversion can cause an overflow at run time if
the resulting data type cannot hold the values of the value sets.

Example

The following C/AL code prints various messages depending on the value of Number. If the value of
Number does not match any of the entries in the CASE structure, the ELSE entry is used as the
default.

CASE Number OF
1,2,9: MESSAGE('1, 2 or 9.');

10..100: MESSAGE('In the range from 10 to 100.');

ELSE MESSAGE('Neither 1, 2, 9, nor in the range from 10 to 100.');

END

Using Repetitive Statements
A repetitive statement is also known as a loop. The looping mechanisms in C/AL are:

• FOR, which repeats the inner statement until a counter variable equals the maximum
or minimum value specified.
316

16.4 The C/AL Control Language
• WHILE, which repeats the inner statement as long as the specified condition is TRUE.
The statement in a loop of this type is repeated 0 or more times.

• REPEAT, which repeats the inner statements until the specified conditions evaluate
to TRUE. The statements in a loop of this type are always executed at least once.

The FOR TO/DOWNTO Control Structure
The syntax of the FOR TO (and FOR DOWNTO) statement is:

FOR <Control Variable> := <Start Number> TO <End Number> DO
<Statement>

The data type of <Control Variable>, <Start Number> and <End Number> must
be boolean, number, time or date.

Use FOR statements when you want to execute some code a specific number of times.
Use a control variable to control the number of times the code is executed. The
<Control Variable> can be increased or decreased by one, depending on whether
TO or DOWNTO is used.

When declaring the type of the <Control Variable>...

When the system executes the FOR statement, the <Start Number > and <End
Number> are converted to the same data type as <Control Variable>, if necessary.
This type conversion can cause a runtime error.

When using a FOR TO loop, the <Statement> will not be executed if the <START
NUMBER> is greater than the end value. Correspondingly, the <Statement> will not be
executed in the FOR DOWNTO loop if the start value is less than the end value.

Note

If the value of the control variable is changed inside the FOR loop, the behavior of the
system is not predictable. Furthermore, the value of the control variable is undefined
outside the scope of the FOR loop.

Example

Create the following variable:.

The following initiates a FOR loop that uses the integer control variable named Count.

FOR Count := 1000 TO 100000000000000 DO

When this statement is executed, a runtime error occurs because the system tries to convert the
start and end values to the same data type as the control variable; but because Count has been
declared as an Integer variable, an error occurs when the system attempts to convert
100000000000000 because this end value is outside the valid range for Integers.

Variable Data Type

Count Integer
317

Chapter 16. Introducing the C/AL Language
Example

This example illustrates how to nest FOR statements.

Create the following variables;

Set the Dimensions property of variable A to 5;7.

The following two FOR statements could be used to initialize every element in a 5 x 7 array with the
value 23.

FOR I := 1 TO 5 DO
FOR J := 1 TO 7 DO

A[I,J] := 23;

The WHILE DO Control Structure
The WHILE DO statement has the following syntax:

WHILE <Condition> DO <Statement>

If <Condition> is TRUE, <Statement> is executed repeatedly, until <Condition>
becomes FALSE. If <Condition> is FALSE from the start, <Statement> is never
executed.

The WHILE DO statement can be used when some code should be repeated as long as
an expression is TRUE.

Example

Create the following variable:

This C/AL code increases the variable i until it equals 1000 and displays a message when it is
finished:

WHILE i < 1000 DO i := i + 1;
Message(format(i));

The REPEAT UNTIL Control Structure
The syntax for the REPEAT UNTIL statement is:

REPEAT <Statements> UNTIL <Condition>

<Statements> is executed repeatedly until <Condition> is TRUE.

Variable Data Type

I Integer

J Integer

A Integer

Variable Data Type

i Integer
318

16.4 The C/AL Control Language
At first glance, this might seem to function just like a WHILE control structure. However,
because the REPEAT UNTIL statement is executed from left to right, the
<Statements> is always executed at least once, no matter what the <Condition> is
evaluated to. This contrasts with the WHILE control structure, which performs the
evaluation before the <Statement> is executed – and means that if the first evaluation
of <Condition> returns FALSE, then no statements are executed.

Example

Create the following variables:

This is a typical example of a REPEAT UNTIL control structure:

Count := 0;
IF Customer.FIND('-') THEN

REPEAT

Count := Count + 1;
UNTIL Customer.NEXT <= 0;

Message(’The Customer table contains %1 records.’,Count);

This code uses a REPEAT UNTIL loop to count the number of entries in the Customer table. The
FIND function finds the first entry in the table. Each time NEXT is called, it steps one record
forward. When NEXT = 0 there are no more entries in the table. The system exits the loop and
displays a message telling you how many entries were found.

The EXIT Statement
The EXIT statement is used to control the flow of the execution. The syntax of an EXIT
statement is:

EXIT([<Value>])

An EXIT statement is used to interrupt the execution of a C/AL trigger. The
interruption takes place even when the code is executed inside a loop or a similar
structure. The EXIT statement is also used when a local function should return a value:
EXIT(Value).

Using EXIT without a parameter in a local function corresponds to using the parameter
value 0. That is, the C/AL function will return the value 0 or '' (empty string).

A compile-time error occurs if EXIT is called with a return parameter from:

• system-defined triggers.
• local functions that are not supposed to return a value.

Example

The following example illustrates the use of the EXIT statement in an arbitrary local function.
Assume that the IF statement is used to detect an error. If the error condition is met, the execution
is stopped and the local function returns the error-code 1.

Variable Data Type Subtype

Count Integer

Customer Record Customer
319

Chapter 16. Introducing the C/AL Language
FOR I := 1 TO 1000 DO
BEGIN

IF Amount[I] < Total[I] THEN EXIT(1);

A[I] := Amount[I] + Total[I];
END;

The WITH Statement
The syntax of a WITH statement is:

WITH <Record> DO <Statement>

When you work with records, addressing is carried out as record name, dot (period)
and field name: <Record>.<Field>

If you work continuously with the same record, you can use WITH statements. When
you use a WITH statement, you only have to specify the record name once.

Within the scope of <Statement>, fields in <Record> can be addressed without
having to specify the record name.

Several nested WITH statements can be used. In case of identical names, the inner WITH
overrules the outer WITH-statements.

Example

This example shows two ways of writing the same code that creates a record variable that you can
commit later.

Create the following variable:

CustomerRec."No." := '1234';
CustomerRec.Name := 'Windy City Solutions';
CustomerRec."Phone No." := '555-444-333';
CustomerRec.Address := '1241 Druid Avenue';
CustomerRec.City := 'Windy City';
MESSAGE('A variable has been created for this customer.');

Another way of expressing the same is:

WITH CustomerRec DO
BEGIN

"No." := '1234';
Name := 'Windy City Solutions';
"Phone No." := '555-444-333';
Address := '1241 Druid Avenue';
City := 'Windy City';
MESSAGE('A variable has been created for this customer.');

END;

Variable Data Type Subtype

CustomerRec Record Customer
320

16.4 The C/AL Control Language
How to Annotate Your Programs
You can insert comments about the code or "outcomment" parts of your code to
prevent execution.

There are two ways to insert comments:

• Use "//" to insert a single line comment. When the compiler encounters the "//"
symbol in your code, it interprets the rest of the line as a comment.

• Use "{" and "}" to mark the beginning and end, respectively, of a block of comments.

You can nest any number of comments. In such cases, the comment runs from the first
comment start to the last comment end.

Example

{

This is a sample comment which is ignored by the C/AL compiler
}

Example

// This is also a sample comment which is ignored by the C/AL

compiler

Example

{ This comment { is partly inside } another comment }

Example

The final example illustrates what you shouldn’t do:

Because the comment is to the right of the C/AL statements, the system assumes that the third and
fourth lines are part of the comment. That is, only A and B are assigned values, while C and D are
not. Instead you should use single line comments:

A := 34;

B := 56; {******************

C := 345; * Don’t do this! *
D := 781; ******************}

A := 34;
B := 56; //*******************

C := 345; //* Do it this way! *

D := 781; //*******************
321

Chapter 16. Introducing the C/AL Language
322

Chapter 17

Using C/AL

This chapter describes some aspects of using C/AL. The first
section gives advice on using the system-defined variables.
The second describes how to handle functions that can
generate runtime errors, depending on how they are used.
The last, and largest, section provides an overview of a
subset of C/AL functions and examples of how to use them.
The functions in this subset are the most commonly used,
and if you understand how to use them, you will be able to
create quite sophisticated C/SIDE applications.

· Overview

· System-Defined Variables

· Handling Runtime Errors

· The Essential C/AL Functions

Chapter 17. Using C/AL
17.1 Overview

This chapter describes how to use C/AL. The first sections concentrate on giving some
advice on things that you should consider when you use C/AL – the most important
subject being where to place the code.

The concepts of system-defined variables and runtime errors are explained. The final
section is devoted to the most commonly used C/AL functions. This includes a detailed
description of each function as well as examples of how to use them.

Where to Write C/AL Code
As described earlier, almost every object in C/SIDE contains triggers where you can
place your C/AL code. There are triggers for:

• Tables
• Table fields
• Forms, including request options forms
• Form controls
• Reports
• Data items
• Sections

You can initiate the execution of your C/AL code from:

• Command buttons
• Menu items

You can also place C/AL code in codeunits and call it from code in any of the locations
mentioned earlier.

As you can see, you can put C/AL code in a variety of places and initiate or trigger its
execution in many ways. You should not, however, choose the location for your C/AL
code at random.

Here are a few simple guidelines that you should follow:

• In general, place the code as close as possible to the object that it will operate on.
This implies that code that modifies records in the database should normally be
placed in the triggers of the table fields that are involved.

• In reports, there should always be a clear distinction between logical and visual
processing, and you should position your C/AL code accordingly. This implies that it
is acceptable to have C/AL code in a section trigger – if that code controls either the
visual appearance of the controls or whether or not the section should be printed.
On the other hand, you should never place code that manipulates data in section
triggers.

• The principle of placing code near to the object it operates on can be overruled in
some situations. One very good reason is security. Normal users do not have direct
access to tables that contain sensitive data – such as the General Ledger Entry
table. If you place the code that operates on the general ledger in a codeunit and
give the codeunit access to the table and the user permission to execute the
324

17.1 Overview
codeunit, you will not compromise the security of the table, and the user will still be
able to access the table.

• There are reasons other than security for putting a posting function like the one
described earlier in a codeunit. A function that is placed in a codeunit can be called
from many places in the application – including, perhaps, some that you did not
have in mind when you first designed the application.

Reusing Code
Perhaps the most important reason for placing C/AL code consistently, and as close to
the objects it manipulates as possible, is that it lets you reuse code. Reusing code
makes developing applications both faster and easier. However, this is not the most
important reason for reusing code whenever you can. If you place your C/AL code as
suggested, your applications will be less prone to errors.

By centralizing the code, you will not inadvertently create inconsistencies by
performing essentially the same calculation in many places, for example, in a number
of control triggers that have the same table field as their source expression. If the code
has to be changed, you could easily either forget about some of these controls or make
a mistake when editing one of them.
325

Chapter 17. Using C/AL
17.2 System-Defined Variables

C/SIDE automatically declares and initializes a number of variables that you can use
when you are developing applications. These are the system-defined variables:

In addition, some triggers (for example, the OnFormat trigger of a control) have a
parameter that is defined as a local variable by the system.

Example

Here is an example of how to use the Rec/xRec pair of records. In an application, data is stored in
two tables, a header table and a line table. The header table contains general information about, for
example, sales orders, while the line table contains the specific order lines. The form that you use to
enter information into the header table has fields that contain the customer’s address. These fields
are related to the Customer table, and can be filled out by using a lookup function in the field that
establishes the relationship. In the header table, only the customer number is stored, and the other
fields with customer information (name, address, and so forth) are retrieved from the Customer
table when the Customer No. field is validated.

Now, should the user be able to change the customer number? In some situations the answer would
be yes, in others no. If the order has already been shipped, the answer should definitely be no, but
there could be situations where it would be yes – it should, for example, be possible to correct an
erroneous number on an order that has not been processed completely.

You could do something like this:

– When validating the customer number field, check whether or not the order has been shipped.

– If it has been shipped, compare the customer number fields in the xRec and Rec records. If they
differ, reject the change.

In real life, you would certainly add some more checks and some user dialog, but this is the basic
idea.

Variable Comments

Rec When a record is modified, the Rec variable contains the current
record (including the changes that are made), while the xRec variable
contains the original values (before the changes).

xRec

CurrForm Refers to the current form. You can access the controls of the form
through this variable and set the dynamic properties of the form and
its controls.

CurrReport Refers to the current report in the same way as CurrForm refers to the
current form.

RequestOptionsForm Refers to the request options form of the current report.

CurrFieldNo The field number of the current field in the current form – retained
for compatibility reasons.
326

17.3 Handling Runtime Errors
17.3 Handling Runtime Errors

In chapter 24, "Debugging C/AL Code", the section "Other Run-time Errors" describes
how to handle functions that return a Boolean value that can be either processed or
ignored.

When you use these functions, four different scenarios are possible, as shown in the
following table:

A typical example of a function that can produce a runtime error, depending on how
you handle the return value is GET. The syntax is:

[Ok :=] Record.GET([Value1], [Value2],...)

Ok is a Boolean value, which is TRUE if the record is found and FALSE if the record is not
found.

If GET is used as follows:

Customer.GET("Customer Number");

and no record is found, a run-time error occurs.

If, on the other hand, GET is used as follows:

IF Customer.GET("Customer Number") THEN
....

ELSE

...

and no record is found, execution continues. In this case, you need to handle the
situation yourself in the ELSE part of the statement.

Return value is ignored Return value is processed

Function succeeds Execution continues Execution continues

Functions fails A runtime error occurs Execution continues, and you must
handle the situation yourself
327

Chapter 17. Using C/AL
17.4 The Essential C/AL Functions

Although there are more than 100 functions in C/AL, you will find that you are
constantly using a limited set of these functions, and only use the rest of the functions
occasionally. When you are developing a basic application, you use perhaps no more
than 20 different functions. This does not mean that the rest of the functions are
obsolete or that you will never use them. However, it does mean that if you are very
familiar with this small set of essential functions, you will be able to go a long way when
you are programming in C/AL. As you need to add more specialized functionality to
your applications, you can familiarize yourself with more of the functions.

The following sections contain some examples of how to use the essential functions.
You should, however, always refer to the C/SIDE Reference Guide online Help for more
information on any C/AL function.

Searching For Records
The three functions described in this section are used to search for records. When you
search for records, it is important to remember the difference between GET and FIND –
and how to use FIND and NEXT in conjunction.

GET GET retrieves one record, based on values of the primary key fields.

GET has the following syntax:

[Ok :=] Record.GET([Value] ,...)

For example, if the No. field is the primary key of the Customer table, GET could be
used like this:

GET(Customer,'4711');

The result is that the record of customer 4711 is retrieved. However, GET is one of those
functions that produce a runtime error if it fails and the return value is not inspected by
the code. This means that the actual code you write should look more like this:

IF GET(Customer,'4711') THEN
.... // do some processing

ELSE

.... // do some error processing

GET searches for the records, regardless of the current filters, and it does not change
any filters. In other words: GET always searches through all the records in a table.

FIND Find locates a record in a C/SIDE table based on the values stored in the keys.

Find has the following syntax:

Ok := Record.FIND([Which])

The important difference between GET and FIND are:

• FIND respects (and is limited by) the current filters.
• FIND can be instructed to look for records where the key value is equal to, larger

than or smaller than the search string.
328

17.4 The Essential C/AL Functions
• FIND can find the first or the last record (depending on the sort order defined by the
current key).

You can use these features in various ways. When you are developing applications in a
relational database, there are often one-to-many relationships defined between tables.
An example could be the relationship between an Item table, which registers items,
and a Sales Line table, which registers the detailed lines from sales orders. Obviously,
one record in the Sales Line table can only be related to one item, but each item can
be related to any number of sales line records.

You would not want an item record to be deleted as long as there are still open sales
orders that include the item. You can use FIND to check whether or not this is the case.

Look at the OnDelete trigger of the Item table. It includes the following code that
illustrates:

SalesOrderLine.SETCURRENTKEY(Type,"No.");
SalesOrderLine.SETRANGE(Type,SalesOrderLine.Type::Item);

SalesOrderLine.SETRANGE("No.","No.");

IF SalesOrderLine.FIND('-') THEN
ERROR(Text001,TABLECAPTION,"No.",SalesOrderLine."Document Type");

NEXT NEXT is often used with FIND to step through the records of a table.

NEXT has the following syntax:

Steps := Record.NEXT([Steps])

as in this fragment:

FIND('-');
REPEAT

// process record

UNTIL NEXT = 0;

Here, FIND is used to go to the first record of the table. Afterwards, NEXT is used to step
through every record, until there are no more (then, NEXT returns 0 (zero)).

Sorting and Filtering Records
The following functions are used to filter records in a table, that is: to set limits on the
value of one or more specified fields, so that only a subset of the records are displayed,
modified, deleted, and so forth. This section also shows you how to change the sort
order of the records in a table.

SETCURRENTKEY This function is used to select a key for a record, and thereby set the sort order that is
used for the table in question.

SETCURRENTKEY has the following syntax:

[Ok :=] Record.SETCURRENTKEY(Field1, [Field2],...)

Remember the following points when you use SETCURRENTKEY:

• Inactive fields are ignored.
329

Chapter 17. Using C/AL
• When searching for a key, C/SIDE selects the first occurrence of the specified field(s).
This means that:

• if you specify only one field as a parameter when you call SETCURRENTKEY, the key
that is actually selected may consist of more than one field.

• if the field that you specify is the first component of several keys, the key that is
selected may not be the key that you expect.

• if no keys can be found that include the field(s) that you specify, a runtime error
occurs unless you test the Boolean return value of SETCURRENTKEY in your code.

If you do test the return value, you must decide what the program should do if the
function returns FALSE, because without a runtime error, the program will continue
to run even though no key was found.

SETRANGE This function is used to set a simple filter on a field.

SETRANGE has the following syntax:

Record.SETRANGE(Field [,From-Value] [,To-Value]);

In this example:

Customer.SETRANGE("No.",'10000','90000');

SETRANGE filters the Customer table by selecting only those records where the No.
field has a value between 10000 and 90000.

When you use SETRANGE you must remember that:

• SETRANGE removes any filters that were set earlier and replaces them with the From-
Value/To-Value parameters that you specify.

• If you use SETRANGE without setting the From-Value/To-Value parameters, the
function removes any filters that are already set.

• If you only set the From-Value, the To-Value is set to the same value as the From-
Value.

SETFILTER SETFILTER sets a filter in a more general way than SETRANGE.

SETFILTER has the following syntax:

Record.SETFILTER(Field, String [, Value], ...];

Field is the name of the field that you want to set a filter on. String is a filter expression
that may contain %1, %2 and so on to indicate the locations where the system will
insert the given values (but not operators) as the Value parameter(s) in a filter
expression.

Here are two examples:

Customer.SETFILTER("No.", '>10000 & <> 20000');

This statement selects records where the No. is larger than 10000 and not equal to
20000.

Customer.SETFILTER("No.",'>%1&<>%2',Value1, Value2);
330

17.4 The Essential C/AL Functions
If the variables Value1 and Value2 have been assigned "10000" and "20000",
respectively, this statement will have the same effect as the first one.

GETRANGEMIN This function retrieves the minimum value of the filter range that is currently applied to
a field.

GETRANGEMIN has the following syntax:

Record.GETRANGEMIN(Field);

A run-time error occurs if the filter that is currently applied is not a range. If, for
example, a filter has been set as follows:

Customer.SETFILTER("No.",'10000|20000|30000');

then

BottomValue := Customer.GETRANGEMIN("No.");

fails, because the filter is not a range.

GETRANGEMAX GETRANGEMAX works like GETRANGEMIN, except that it retrieves the maximum value of
the filter range that is currently applied to a field.

GETRANGEMAX has the following syntax:

Value := Record.GETRANGEMAX(Field)
331

Chapter 17. Using C/AL
Inserting, Modifying and Deleting Records
These function are used to maintain the database by adding, modifying and removing
records.

Generally, these functions return a Boolean value that indicates whether or not the
function succeeded. If you do not handle the return value in your code, a run-time
error occurs when a function returns FALSE. If you handle the return value – by testing
its value in an IF statement – no error will occur, and you must take corrective action
yourself (knowing that the function did not succeed, of course).

INSERT This function inserts a record in a table.

INSERT has the following syntax:

[Ok :=] Record.INSERT([RunTrigger])

Example

Create the following variable:

Customer.INIT;
Customer."No." := '4711';

Customer.Name := 'John Doe';

Customer.INSERT;

This statement inserts a new record, with the No. and Name specified in the assigned
values, while other fields will have their default values. If No. is the primary key of the
Customer table, the record will be inserted in the Customer table unless the table
already contains a record with the same primary key. In this case you receive an error
message because the return value is not tested.

MODIFY This function is used to modify a record that already exists.

MODIFY has the following syntax:

[Ok :=] Record.MODIFY([RunTrigger])

Like INSERT, it returns a Boolean – TRUE, if the record to be modified exists and FALSE
if it doesn't exist.

Example

Create the following variable:

Variable Data Type Subtype

Customer Record Customer

Variable Data Type Subtype

Customer Record Customer
332

17.4 The Essential C/AL Functions
Customer.GET('4711');
Customer.Name := 'Richard Roe';

Customer.MODIFY;

These statements change the name of customer 4711 to Richard Roe.

MODIFYALL This function is used to do a bulk update of records.

MODIFYALL has the following syntax:

Record.MODIFYALL(Field, NewValue [, RunTrigger])

MODIFYALL respects the current filters, meaning that you can perform the update on a
specified set of records within a table. MODIFYALL does not return any value, nor does
it cause an error if the set of records to be changed is empty.

Example

Create the following variable:

Customer.SETRANGE("Salesperson Code",'PS','PS');

Customer.MODIFYALL("Salesperson Code",'JR');

The SETRANGE statement selects the records where Salesperson Code is PS, and
MODIFYALL changes the Salesperson Code of these records to JR.

DELETE This function is used to delete a record from the database.

DELETE has the following syntax:

[Ok :=] Record.DELETE([RunTrigger])

The record that you want to delete must be specified (using the value(s) in the primary
key fields) before calling this function. This means that DELETE does take filters into
consideration.

Example

Create the following variable:

Here is an example in which DELETE is used to delete the record for customer number 4711:

Customer."No." := '4711';

Customer.DELETE;

Variable Data Type Subtype

Customer Record Customer

Variable Data Type Subtype

Customer Record Customer
333

Chapter 17. Using C/AL
DELETE returns a Boolean value: TRUE if the record could be found, FALSE if it could
not be found. Unless you test this value yourself, a runtime error occurs when DELETE
fails (returns FALSE).

When you are developing your own applications, you should consider the following
scenario:

1 First you retrieve a record from the database.

2 Then you perform various checks to determine whether the record should be
deleted.

3 If step 2 indicated that you should delete the record, you delete it.

Now, this can cause problems in a multi-user environment. Another user can modify or
delete the same record between your performing steps 2 and 3. If the record is
modified, then perhaps the new contents of the record would have changed your
decision to delete it. If it has been deleted by the other user, you can get a seemingly
inexplicable run-time error if you have just verified that the record existed (in step 1).

If the design of your application indicates that you can encounter this problem, you
should consider using the LOCKTABLE function (described in the next section) – but
LOCKTABLE should be used as sparingly as possible, because this function effectively
short-circuits the concept of optimistic concurrency, thereby degrading performance.

DELETEALL This function is used to delete all the records that are specified by the filter settings. If
no filters are applied, all the records in the table are deleted.

DELETEALL has the following syntax:

Record.DELETEALL([RunTrigger])

Example

Create the following variable:

The following statements delete all the records from the Customer table where the Salesperson
Code is PS:

Customer.SETRANGE("Salesperson Code", 'PS', 'PS');

Customer.DELETEALL;

Note

When you use DELETEALL(TRUE), C/SIDE creates a copy of the C/AL variable with its
initial values. This means that when you use DELETEALL(TRUE) to run the OnDelete
trigger, all the changes that were made to the variables in the function or codeunit that
is making the call cannot be seen in the OnDelete trigger. If you want to see the
changes made to the variables, you must use Delete(TRUE) in a loop. There is no
difference in performance between using DELETEALL(TRUE) and using Delete(TRUE)
in a loop.

Variable Data Type Subtype

Customer Record Customer
334

17.4 The Essential C/AL Functions
Transactions
Normally, you do not need to take transactions and table locking into consideration
when you are developing applications in C/SIDE. The chapter C/SIDE in Multiuser
Environments on page 519 explains the details.

There are, however, some situations where you have to lock a table explicitly. For
example, in the beginning of a function, you inspect data in a table and then use this
data to perform various checks and calculations. Finally, you want to insert a record
based on the result of these calculations.

To ensure that your calculations make sense, you must be certain that the values you
retrieved at the beginning of the transaction are consistent with the data that is in the
table now. In other words, you cannot allow other users to update the table while your
function is performing its calculations.

LOCKTABLE The solution to this problem is to use the LOCKTABLE function to lock the table at the
start of your function.

LOCKTABLE has the following syntax:

Record.LOCKTABLE([Wait] [, VersionCheck])

For more information about concurrency in Dynamics NAV, see "Read Consistency and
Concurrency" on page 522.

Working with Fields
The following functions perform various actions on fields.

CALCFIELDS The CALCFIELDS function is used to update FlowFields. As described in "Form and
Control Properties" on page 152, FlowFields are automatically updated when they are
the direct source expressions of controls, but they must be explicitly calculated when
they are part of a more complicated expression.

CALCFIELDS has the following syntax:

[Ok :=] Record.CALCFIELDS(Field1, [Field2],...)

When you use FlowFields in C/AL functions, you must use the CALCFIELDS function to
update them. In the following statements, the SETRANGE function sets a filter and then
CALCFIELDS is called. The CALCFIELDS function calculates the Balance and Balance
Due fields by taking account of the current filter and performing the calculations that
are defined as the CalcFormula properties of the FlowFields.

Example

Create the following variable:

The following code calculates the balance and balance due for customer number 01454545:

Variable Data Type Subtype

Customer Record Customer
335

Chapter 17. Using C/AL
Customer.GET('01454545');
Customer.SETRANGE("Date Filter",0D,TODAY);

Customer.CALCFIELDS(Balance,"Balance Due");

MESSAGE('The Balance is %1 and your Balance Due is
%2',Customer.Balance,Customer."Balance Due");

and displays the following message:

CALCSUMS The CALCSUMS function is used to calculate the sum of one or more fields that are
SumIndexFields in the record.

CALCSUMS has the following syntax:

[Ok :=] Record.CALCSUMS (Field1, [Field2],...)

For CALCSUMS to work, a key that contains the SumIndexFields must be selected as the
current key. Like CALCFIELDS, CALCSUMS takes the current filter settings into account
when performing the calculation.

Example

Create the following variable:

In this code, an appropriate key is selected, some filters are set, the calculation is performed and
finally a message is displayed.

custledgerentry.SETCURRENTKEY("Customer No.");

custledgerentry.SETRANGE("Customer No.",'10000','50000');
custledgerentry.SETRANGE("Posting Date",0D,TODAY);

custledgerentry.CALCSUMS("Sales (LCY)");

MESSAGE ('%1 calculated sales',custledgerentry."Sales (LCY)")

FIELDERROR The FIELDERROR function triggers a runtime error after having displayed a field-
related error message.

FIELDERROR has the following syntax:

Record.FIELDERROR(Field, [Text])

Variable Data Type Subtype

custledgerentry Record Cust. Ledger Entry
336

17.4 The Essential C/AL Functions
The function is very similar to the ERROR function, described on page 342. However, it
does have some uses of its own. For one thing, it is easier to use. But the most
important reason for using it is that if the name of a field is changed (for example,
translated to another language) in the Table Designer, the message from the
FIELDERROR function will reflect the current name of the field.

FIELDERROR can be called simply:

Example

Create the following variable:

Item.GET('70000');

IF Item.Class <> 'HARDWARE' THEN
Item.FIELDERROR(Class);

If item 70000 has a Class other than hardware, an error message is displayed:

You see a message like this when a text or code field contains the empty string:

(When a numeric field is empty, it is treated as though it contains the value 0 (zero) –
and will produce a message like the first one shown, with "0" instead of "FOOD".)

Finally, if the default texts don't suit your application, you can add your own text. In this
case, you call FIELDERROR as follows:

Example

Create the following variable:

IF Item.Class < '4711' THEN
Item.FIELDERROR(Class,'must be greater than 4711');

Variable Data Type Subtype

Item Record Item

Variable Data Type

Class Code
337

Chapter 17. Using C/AL
and the message will look like this:

FIELDNAME The FIELDNAME function returns the name of a field.

FIELDNAME has the following syntax:

Name := Record.FIELDNAME(Field)

You could simply use the name of the field, as you probably know it when you are
writing the code. However, using FIELDNAME allows you create messages that always
contain the name of the field, even if the name of the field is changed. FIELDNAME
could be used together with FIELDERROR, in a construction like this:

FIELDERROR(

Quantity,'must not be less than ' +

FIELDNAME("Quantity Shipped"));

INIT The INIT function initializes a record.

INIT has the following syntax:

Name := Record.FIELDNAME(Field)

If a default value for a field has been defined (with the InitValue property), this value is
used for the initialization – otherwise, the default value of each data type is used (see
the C/SIDE Reference Guide online Help entry for INIT).

Note that INIT does not initialize the fields of the primary key.

TESTFIELD This function is used to test whether a field contains a specific value.

TESTFIELD has the following syntax:

Record.TESTFIELD(Field, [Value])

If the test fails, that is if the field does not contain the specified value, an error message
is displayed, and a run-time error is triggered. This means that any changes that were
made to the record are discarded. If the value that you test against is an empty string,
the field must have a value other than blank or 0 (zero).

Example

Create the following variable:

Variable Data Type Subtype

customer Record Customer
338

17.4 The Essential C/AL Functions
The following code:

customer.GET('10000')

customer.TESTFIELD("Language Code",'ZX');

tests the Language Code field for customer number 10000 in the Customer table and tests
whether or not the Language Code is ZX. It isn’t and the code generates this error message:

VALIDATE The VALIDATE function is used to call the OnValidate trigger of a field.

VALIDATE has the following syntax:

Record.VALIDATE(Field [, NewValue])

Example

When you enter an account number in a ledger, the system executes some table trigger code to
transfer the name of the account from the chart of accounts.

If you enter an account number in a batch job, the system does not automatically execute the code
which transfers the name of the account. The following code tells the system to execute the
appropriate field-level trigger code.

Create the following variable:

GeneralLedgerEntry.VALIDATE("G/L AccountNo", '100');

This corresponds to:

GeneralLedgerEntry."G/L AccountNo" := '100';
GeneralLedgerEntry.VALIDATE("G/L AccountNo");

The VALIDATE function is useful for centralizing processing and thereby making your
application easier to maintain.

For example, if that the OnValidate trigger of the Total Amount field performs a
calculation that uses values from three other fields as operands, the calculation must be
performed again if the contents of any of these fields changes.

You should avoid entering the calculation formula in the OnValidate triggers of each
field because this can create all sorts of errors if the calculation formula has to be
changed later and you have to update the code in all the triggers. Instead, you should
enter the calculation formula in the OnValidate trigger of only one of the fields and call
this trigger code from the OnValidate triggers of the other fields.

Variable Data Type Subtype

GeneralLedgerEntry Record G/L Entry
339

Chapter 17. Using C/AL
User Messages And Dialogs
There are several specialized functions that you can use to display messages and gather
input. However, you should use forms whenever possible to ensure that your
application has a consistent user interface.

Needless to say, there are situations where it makes sense to use the dialog functions.
The three most important uses of the dialog functions are:

• To display a window that indicates the progress of some processing that may take a
long time.

• To stop the program executing, in order to display an error message
• To get the user to confirm a choice before the program continues executing.

You will also find the STRMENU function useful for creating forms that present options
to the user. It is much faster to use this function than to design a form solely to present
a limited set of options to the user.

Creating a Window to Indicate Progress
When you have written an application that performs some processing that can – for
perfectly good reasons – take a long time, you should consider displaying a window
that informs the user of the progress that is being made. The information contained in
a progress window or indicator can be superfluous, but it is a good idea to inform the
user that something is actually going on and that the program is still running.

A Cancel button is automatically part of every dialog window and gives the user the
opportunity to stop the processing.

In some applications, you can create an indicator control to do this. How to do this is
described in the section, "Using an Indicator to Display Values" on page 182. In other
applications, you can create a window like this instead:

In this window, each field is updated while the program is running. In this example, the
fields are used to count the number of postings being made.

In another situation you could display, for example, the number of the account that is
currently being processed, like this:
340

17.4 The Essential C/AL Functions
To create a window like this:

1 Open the Object Designer and create a new codeunit.

2 Create a variable called ProgressWindow of data type Dialog.

3 Create a variable called ChartOfAcc of data type Record and Subtype G/L Account.

4 Open the C/AL Editor window for the dialog and add the following code:

 ProgressWindow.OPEN('Processing account number #1#######');
REPEAT
 SLEEP(1000);
 ProgressWindow.UPDATE(1,ChartOfAcc."No.");
 // process the account...
UNTIL ChartOfAcc.NEXT = 0;
ProgressWindow.CLOSE;

The first line defines the string that will be displayed in the progress window. The
part of the string that contains the pound signs (#) and a number defines the field
that will be displayed in the window. The number (1) refers to the field.

In this example, each entry in the G/L Account table is updated and the number
each account is displayed as it is updated.

The SLEEP(1000); function is completely unnecessary and just slows down the
processing so that you can see the progress window.

Other User Messages
There are a number of other dialog functions that you can use to display short
messages to the user. A common trait of these dialogs, except MESSAGE, is that the
program stops executing until the user makes a response.

MESSAGE The MESSAGE function displays a message in a window that remains open until the user
clicks the OK button on the window.

MESSAGE has the following syntax:

MESSAGE(String [, Value1, ...])

MESSAGE executes asynchronously, that is: MESSAGE is not executed until the function
from which it was called ends or another function requests user input. The function is
341

Chapter 17. Using C/AL
useful for notifying the user that some processing has been successfully completed, as
in this example:

For an example of this see Codeunit 83. The code in the OnRun trigger (among other
things) converts a Quote into a Sales Order and ends with a message. The message is
generated by the following code:

MESSAGE(Text001,"No.",SalesHeader2."No.");

Text001 is a text constant that contains the following text:

Quote %1 has been changed to order %2.

Note

Unlike the progress window example, the MESSAGE function was used without first
declaring a variable of type Dialog, because the MESSAGE function creates a window of
its own.

ERROR The ERROR function is very similar to the MESSAGE function, except for one detail: when
the user has acknowledged the message, execution ends. See also the description of
FIELDERROR on page 336.

ERROR has the following syntax:

ERROR(String [, Value1, ...])

CONFIRM The CONFIRM function is used just like the MESSAGE function to display a message.

CONFIRM has the following syntax:

Ok := Dialog.CONFIRM(String [, Default] [, Value1] ,...)

However, unlike the MESSAGE function, the CONFIRM function returns a value that can
(and must) be used, depending on whether the user chooses Yes or No. Its obvious use
is to ask a question like this:

The window is created by a statement like this:

IF CONFIRM('Do you want to post the journal lines and print the

report(s)?',FALSE) THEN
Message('Posting')
342

17.4 The Essential C/AL Functions
ELSE
Message('No Posting');

EXIT;

The FALSE parameter means that No is the default.

A Quick Options Form
The STRMENU function is used to create and display a form with an option group, and
to return the selection that the user makes to the program.

STRMENU STRMENU has the following syntax:

OptionNumber := Dialog.STRMENU(OptionString [, DefaultNumber]);

OptionNumber is the number of the option that the user chooses. The first option in
the OptionString is number 1. If the user closes the form with ESC, STRMENU returns 0
(zero). If it is defined, DefaultNumber is used to select the default option. If
DefaultNumber is not defined, the system will use option number 1 as the default.

Example

Create the following variable:

The following code:

Selection := Dialog.STRMENU('Save,Close,Cancel',3);

creates the following window:

Notice that Cancel is the default option because the DefaultNumber parameter was set
to 3. It is a good idea to let the default option be a "harmless" action, like Cancel,
because this option can be selected by pressing ENTER. If the user inadvertently presses
ENTER, nothing disastrous happens, as might be the case if, for example, one of the
options was "Delete all".

Variable Data Type

Selection Integer
343

Chapter 17. Using C/AL
344

Chapter 18

Debugging C/AL Code

This chapter describes the nature of program errors, bugs,
and how to use the Dynamics NAV Debugger to track down
errors.

· What Are Bugs?

· The Microsoft Dynamics NAV Debugger

· The Code Coverage Tool

Chapter 18. Debugging C/AL Code
18.1 What Are Bugs?

There are three categories of errors you can meet when you develop applications that
use C/AL code

• Syntax errors
• Run-time errors
• Program logic errors

Traditionally, errors in computer programs are called bugs, and the process of finding
and correcting errors is, correspondingly, called debugging.

This chapter describes how you can find and eliminate bugs and errors, and it shows
how you use the Dynamics NAV Debugger to find run-time and program logic errors.

Syntax Errors
These errors are detected by the C/AL compiler when you try to compile C/AL code, be
it in a codeunit or as code in another object (table, form, report, dataport or codeunit).
The compiler will notify you of the error with a message like this:

or this:

When you have pressed ENTER and acknowledged the error message, the C/AL editor
will appear with the cursor in front of the offending expression. Note that the error
message may not always reflect the nature of the error. Consider this message:
346

18.1 What Are Bugs?
When you look at the offending code in the editor, it becomes clear that the error has
nothing to do with an unknown variable:

The real error is a misspelling of IF, which has been entered as UF. From the point of
view of the compiler, UF is an unknown identifier, hence the error message. When you
look at the code, however, it is easy to see what was really the matter.

The compiler will not compile code that contains any syntax errors, like a missing THEN
in an IF statement, or code that uses undeclared variables.

Run-time Errors
Run-time errors occur when the program is executed. These errors are not detected by
the compiler, because the code is syntactically correct in these cases. A good example is
division by zero. Consider this statement:

Ratio := First_number / Second_number;

There is nothing wrong with the syntax, but the statement may cause the following
error:

This error occurs because the Second_number variable has been assigned a value of 0
(zero), causing a division by zero.

If all three variables are of type integer, the following error could occur:

This error occurs because the result of the division cannot be contained in an integer.
Therefore, the result is converted to decimal, but then the conversion back to integer
(to fit the result into the Ratio variable) fails.
347

Chapter 18. Debugging C/AL Code
The common trait of these errors is that the code works perfectly in many situations,
but fails in others. The real danger is that since there is nothing syntactically wrong with
the code, the error could occur when the program is already in use. Unless you handle
the run-time error in your code, the default messages shown earlier will appear.

If, as in the example, the division by zero was attempted using three variables that were
assigned values in a simple form, the form could have been designed like this:

and, finally, the expression

Ratio := First_number / Second_number;

was entered in the OnValidate trigger of the Second_number text box.

Then, when the user enters a zero in the second text box the run-time error shown
earlier appears.

After the user clicks OK and acknowledges the run-time error, the form looks like this:
348

18.1 What Are Bugs?
Now, the user cannot move out of the Second_number text box, or close the form,
without entering a value other than 0 (zero).

About Run-time Errors and Data Consistency

You may now be wondering whether or not run-time errors can compromise the
integrity of the database. For example, if some fields are updated in a trigger and a
run-time error occurs while some other fields have not been updated. The chapter
"C/SIDE in Multiuser Environments" on page 519 explains how data integrity is always
maintained, under all circumstances. When a trigger is entered, a write transaction
begins. If a run-time error occurs inside the trigger, the write transaction is rolled back
and the execution of the trigger is terminated.

How to Avoid Run-time Errors
Basically, run-time errors should never occur, and they won’t, if you exercise care when
programming. The following description contains some guidelines on how to avoid
run-time errors, but they are only guidelines, as the conditions under which run-time
errors occur are highly dependent on the context of your application. If, for example,
you use the GET function to locate a record, you must handle the possibility that a run-
time error can occur if there are situations where no record is found. On the other
hand, if you are absolutely certain that the specific context precludes this situation, you
can omit handling a possible run-time error. (The context could be that the existence of
a record is verified before the GET function is used.)

Generally speaking, there are two categories of run-time error: those that are related to
the use of data types, and those that occur if a function does not succeed in doing
what it is supposed to do. Division by zero does not fit readily into either of these
categories, but it has been placed in the first one.

The heading of this section is, perhaps, overly optimistic: you can only prevent some
errors (mainly the data type-related ones) from occurring. Other errors cannot always
be avoided, but you can write code that shields the user from the error. That is, instead
of the default error handling (which amounts to displaying a message, closing the form
that was active when the error occurred and rolling back any changes to the database),
you can write a better error handler that, for example, gives the user a chance to
correct the input that caused the error, or, at least, displays a message that explains in
further detail why the error occurred.

Data Type-Related Errors
The easiest way to avoid this category of run-time error is to use the correct data types.
Errors like the type conversion error shown earlier and overflow errors, can be avoided
by using the correct data types. In the context of this example, integer was obviously
not a good choice for the Ratio variable. See "Introducing the C/AL Language" on page
295 for a description of the data types, and "Type Conversion" on page 505 for a
description of how type conversion works in C/SIDE.

The division by zero error could have been avoided in several ways, depending upon
the context where the code fragment is used. If the user enters the denominator (the
Second_number variable) in a text box immediately before the evaluation of the
349

Chapter 18. Debugging C/AL Code
statement, you could test the value of Second_number before performing the division,
and reject a value of 0 (zero):

IF Second_number <> 0 THEN

Ratio := First_number / Second_number
ELSE

MESSAGE('Second_number must not be 0');

If Second_number is a field in a database table, and it should never be allowed to have
a value of 0 (zero), the best place to perform this check is in the OnValidate trigger of
the field. In this way, you ensure that a value of 0 (zero) can never be entered in the
field, no matter how many different forms and text boxes are used to enter data in the
field.

Other Run-time Errors
Any function that can fail to accomplish what it is intended to do can cause a run-time
error. A good example is the GET function, which is used to locate a record in a table
according to criteria that you specify. For more information. see the C/SIDE Reference
Guide online Help for the GET function.

The syntax of the GET function is:

[Ok :=] Record.GET([Value1], [Value2],...)

The return value of the function is Ok, a Boolean. If a record is found, the return value is
TRUE, otherwise it is FALSE. This return value can be ignored, as indicated by the
square parentheses. If it is ignored, and the requested record cannot be found, a run-
time error occurs and a system-generated error message is displayed. If, on the other
hand, you test the return value, a run-time error does not occur, as it is then assumed
that you handle the condition yourself.

The C/SIDE Reference Guide online Help always tells you whether or not the other
functions handle errors in the way as the GET function does. You can also look at the
syntax description in the Symbol Menu, to see if the function you intend to use returns
a value called Ok. If it does, you should consult the C/SIDE Reference Guide online Help
as there are some functions that return a Boolean for other reasons than those
described here. For example, the ASCENDING function can be used to check the sort
order of a table, and in this case it returns TRUE if the sort order is ascending, and
FALSE if it is descending.

Example

If you use the return value, in a construction like this:

IF NOT Customer.GET("No.") THEN

Customer.INIT;

or like this

IF NOT Customer.GET("No.") THEN

BEGIN

MESSAGE('Customer %1 not found', "No.");

EXIT;
END;
350

18.1 What Are Bugs?
you can shield the user from a run-time error. In the first example, if a Customer record with the
given No. cannot be retrieved, an (empty) record is initialized. In the second example, the user is
notified that the record cannot be found and the trigger from where the GET function was called is
exited. These examples are only general guidelines. You must consider how to handle situations like
these in the context of your own application.

Finding and Correcting Run-time Errors
As you can see from the run-time error messages reproduced on page 347, this type of
message is supposed to be read by the end user. Therefore, the messages do not
include references to variables or functions, but rather an explanation and the "real"
values that caused the error. This means that these errors can be a little harder to locate
than, for example, syntax errors.

To track down a run-time error, you need an exact description of the sequence of
events that led to the error; that is, what the user was doing at the time of the error,
and what values the user had entered or what record caused the error.

If the error was caused by something as simple as a calculation formula that failed to
check whether a division by zero was about to be carried out, you should be able to
find the statement that led to the error quite easily. If, on the other hand, the
circumstances that led to the error are more complicated, and you cannot pinpoint the
exact place directly, you can use the debugger as described in "The Code Coverage
Tool" on page 360.

Program Logic Errors
The third major category of errors is program logic errors (strictly speaking, the term
bug should perhaps be reserved for errors of this type). A program logic error is an
error in an application that could compile perfectly and can run without causing run-
time errors, but still fails to function as intended.

It can be argued that many, if not most, run-time errors are also program logic errors.
However, the "real" program logic error will not make itself noticed in a similarly
spectacular way but will quietly generate incorrect data that may not always be
detected straight away.
351

Chapter 18. Debugging C/AL Code
18.2 The Microsoft Dynamics NAV Debugger

Dynamics NAV provides an integrated debugger to help you check, correct or modify
code so that your application can build successfully, run smoothly and act as you
expected.

Overall Description
The basic concept in debugging is the breakpoint, which is a mark that you can set on a
statement. When the program flow reaches the statement, the debugger intervenes
and suspends execution (breaks) until you instruct it to continue. Without any
breakpoints, the code would just run normally when the debugger is active. The state
disabled breakpoint means that the breakpoint is still present on the statement but is
momentarily disabled (execution will not stop at this breakpoint).

If you wish to track down a run-time error, you simply disable the Break on Triggers
setting from within the debugger and click Go. The debugger will automatically stop
execution of the code when it encounters an error.

You can also use the debugger to find a logical error. However, finding the error will
not be as easy, and you must have a good understanding of how the code is supposed
to work. The debugger enables you to execute your C/AL code one statement at a time
while you inspect the contents of global variables, local variables and text constants at
each step. In this way, you can see whether the values that are actually used differ from
those you expected when you designed the application.

The Breakpoint on Triggers setting (SHIFT+CTRL+F12) is enabled by default when you
activate the debugger for the first time. Otherwise the code would be executed
normally because there are no breakpoints. The debugger will therefore suspend
execution of the code when it reaches the first trigger. At this point you can set other
breakpoints and then disable the Breakpoint on Triggers option if you want to. If you
do not disable the Breakpoint on Triggers setting, the debugger will suspend execution
of the code at every trigger it reaches.

The code coverage functionality, which is described on page 360, enables you to log
and view code that was executed in one or more transactions. You can use this
functionality as an alternative to, or in combination with, the debugger.

Activating the Debugger
You can activate the debugger from Dynamics NAV and from NAV Application Server:

From Dynamics NAV To activate the debugger from Dynamics NAV, click Tools, Debugger, Active
(SHIFT+CTRL+F11). You can also start Dynamics NAV with the debugger active from the
command line by using the debug parameter:

Example

fin.exe debug
352

18.2 The Microsoft Dynamics NAV Debugger
From NAV
Application Server

To activate the debugger from NAV Application Server, you include the debug
parameter at start-up:

Example

nas debug,startupparameter=”test”,servername=PC0123

If you deactivate the debugger, you cannot activate it again unless you terminate NAV
Application Server and then start it up with the debug parameter.

Note that to be able to activate the debugger, there must be a developer license file in
the NAV Application Server installation folder.

The Debugger Interface
The debugger interface provides special menus, windows and a dialog box. These are
described in the following.

Debugger Menus
You can find debugging commands in the Edit, View and Debug menus:

The Edit Menu From this menu, you can access the Breakpoints dialog box
(SHIFT+F9). It displays a list of the breakpoints that you have set for the object you are
debugging. You can enable, disable and remove breakpoints in the list.
353

Chapter 18. Debugging C/AL Code
The View Menu This menu contains commands that display the various debugger
windows, such as the Variables window and the Call Stack window. It also contains a
command for adjusting the size of the text shown in the interface, and a command for
showing/hiding the standard and debug toolbars.

The Debug Menu This menu contains commands that start and control the
debugging process, for example, Go, Step Into, Step Over and Show Next Statement.

• Go executes code from the current statement until a breakpoint or the end of the
code is reached, or until the application pauses for user input.

• Step Into executes statements one at a time, and you can decide how to continue
after each statement. The execution will step into any function that is called, which
means that the debugger will single-step through the statements in the function.

• Step Over executes statements one at a time, like Step Into, but if you use this
command when you reach a function call, the function is executed without the
debugger stepping through the function instructions. Note, however, that if you use
this command when the Breakpoint on Triggers setting is enabled, the debugger will
still suspend code execution at every trigger it reaches. Furthermore, if there is a
breakpoint in one of the functions you step over, the debugger will break at that
breakpoint.

• Show Next Statement shows the next statement in your code.

The Debug menu also contains commands for setting, enabling/disabling and
removing breakpoints. Note that the Breakpoint on Triggers option is set
independently of other breakpoints, so the Remove All Breakpoints command does not
affect it.

The Debugger Toolbar
The toolbar buttons represent commands that are also available from the menus.

Use these toolbar buttons
to show/hide the Output,
Variables, Call Stack and
Watch windows.

Insert/Remove Breakpoint
Enable/Disable Breakpoint
Remove All Breakpoints

The Go and Stop Debugging buttons

Step Into and Step Over

Show Next Statement
354

18.2 The Microsoft Dynamics NAV Debugger
Debugger Windows
There are four specialized windows for displaying debugging information: Output,
Variables, Call Stack and Watch. You can access these windows from the View menu
and from the standard toolbar.

The Output Window Displays information related to the debugging process.

The Variables Window Displays name, value and type information for variables used
in the current and previous statements, including the values of an array structure. The
window has four tabs: All, Locals, Globals and Text Constants. You cannot add
variables to the Variables window (you must use the Watch window for that). You can
expand or collapse the variables shown using the tree controls. You can expand a
variable if it has a plus sign (+) box in the Name field. If there is a minus sign (–) box in
the Name field, the variable is already fully expanded.

The Call Stack Window Displays the stack of function calls that are currently active.
When a function is called, it is pushed onto the stack. The debugger displays the
currently executing function at the top of the stack and older function calls below that.

When you double-click a call stack line, a green arrow appears to the left of the line. In
the window that contains the code being debugged, a corresponding green arrow
appears to indicate how far the debugger has reached in the specific trigger for the call
stack line that you selected.

The Watch Window Use the Watch window to monitor variables of special interest
while debugging your program. You can drag and drop the name of the variable that
you want to watch from the Variables window or from the window that contains the
code being debugged. You can also type the names of variables in this window.

The Call Stack window The Watch windowThe Output windowThe Variables window

This window simply contains
the code that is being
debugged for a specific object
- here it is a codeunit.

All built-in functions and AL
statements are shown in blue.
Comments are shown in green
and text strings are shown in
red.
355

Chapter 18. Debugging C/AL Code
The Watch window contains three tabs: Watch1, Watch2 and Watch3. You can
group variables that you want to watch together onto the same tab. For example, you
could put variables related to a specific window on one tab and variables related to a
dialog box on another tab. You could watch the first tab when debugging the window
and the second tab when debugging the dialog box.

Symbols used in the Debugger Interface
The symbols used in the debugger interface are as follows:

Working with Breakpoints in the C/AL Editor
To toggle between setting, enabling/disabling and removing breakpoints in the C/AL
Editor, use the F9 key (or select the Tools, Debugger, Toggle Breakpoints menu
command). Information about the breakpoints is stored in the Breakpoints virtual
table when you close the C/AL Editor.

The Breakpoints Virtual Table
The Breakpoints virtual table, which has ID 2000000059, can store the following
information about the breakpoints that you set:

You must create a tabular form based on the Breakpoints virtual table to manage
breakpoints.

Symbol Meaning

There is an enabled breakpoint at this statement.

There is a disabled breakpoint at this statement.

This is a statement that will be executed.

Indicates that you have double-clicked a call stack line. This arrow also appears
in the window containing the code that is being debugged. Here it indicates
how far the debugger has reached in the trigger for the call stack line that you
selected.

Field Description

Object ID The ID of the object for which breakpoint information has been stored.

Object Type Table, Form, Report, Dataport or Codeunit.

Trigger Line The number of the trigger line where there is a breakpoint.

Code No. A code number for the trigger that contains a breakpoint. C/SIDE uses this
number to identify the trigger at run-time.

Trigger Name The name of the trigger where there is a breakpoint.

Object Name The name of the object.

Enabled A check mark indicates whether or not the breakpoint is enabled.
356

18.2 The Microsoft Dynamics NAV Debugger
Here is an example of how your form could look:

Information about breakpoints is saved when you close an object or when you save a
new object – compilation is unnecessary. Breakpoints are therefore not stored for
objects that you do not save.

Storage of Breakpoints in an XML File
Breakpoints that are stored in the Breakpoints virtual table are automatically stored in
a NaviBP.xml file. The file is located by default in the same folder as the fin.zup file.
On a Windows XP computer, the path is: C:\Documents and
Settings\user\Application Data.

Here is an example of an XML file that contains breakpoint information for two objects:

This file contains breakpoints for MyCodeunit 1 and MyCodeunit 2. The objects are
shown as XML elements called "Object". The object element has three attributes: Type,
ID and Name.

If you expand the first object, MyCodeunit 1, you can see one "Breakpoint" element.
This shows that the object contains one breakpoint:
357

Chapter 18. Debugging C/AL Code
When a breakpoint element is expanded, you can see four types of information for the
breakpoint:

Starting Dynamics NAV or NAV Application Server Using Another
Breakpoint File
You can start both Dynamics NAV and NAV Application Server with a breakpoints
parameter. This enables you to specify a particular file for saving and loading
breakpoints.

Example

FIN.EXE breakpoints=C:\MyBreakpoints.xml

Storage of Debugging Information in the FIN.ZUP File
The selections that you make in the Tools, Debugger, Active and Tools, Debugger,
Breakpoint on Triggers menu commands are stored in the fin.zup file. This means, for
example, that if the debugger was active and set to break on triggers when you logged
off, then these selections will apply when you log on again.

Overview of Shortcut Keys
Here is a list of the shortcut keys for the most common debugging commands:

XML Tag Description

TriggerName The name of the trigger that contains the breakpoint.

CodeNo The Code Number for a specific trigger in an object. C/SIDE uses this number to
identify the trigger at run-time.

Trigger Line The number of the line in the trigger where the breakpoint has been defined.

Enabled A Boolean expression of whether or not the breakpoint is enabled.

Shortcut Key Command

SHIFT+CTRL+F11 Debugger Active

F5 Go

F9 Toggle Breakpoint

SHIFT+CTRL+F12 Breakpoint on Triggers

SHIFT+F9 Open Breakpoints Dialog Box

CTRL+SHIFT+F9 Remove All Breakpoints

F8 Step Into

CTRL+F8 Step Over

ALT+NUM* Show Next Statement

SHIFT+F5 Stop Debugging
358

18.2 The Microsoft Dynamics NAV Debugger
The Debugger and the Command Buffer

C/SIDE uses a command buffer to improve performance. However, when you run the
debugger, C/SIDE deactivates the command buffer. For more information, see
"Performance" on page 559.
359

Chapter 18. Debugging C/AL Code
18.3 The Code Coverage Tool

When you add the function (trigger) with ID 6 to Codeunit 1, you can access the code
coverage functionality from the Debugger submenu of the Tools menu. You can now
start and stop code logging. You can also view the code that is logged. Further, you can
use the CODECOVERAGELOG function to start and stop the logging of code. This function
can also retrieve the current logging status. See the online C/SIDE Reference Guide for
information about the CODECOVERAGELOG function.

The code coverage functionality is useful when you are customizing Dynamics NAV
and want to test your work. It provides a quick overview of the objects for which code
has been executed, and it displays the code that has been logged.

The Code Coverage window displays the objects (tables, forms, reports, dataports
and/or codeunits) for which code has been executed and logged during one or more
transactions. The Code Overview window displays the code that has been logged for a
selected object. You can read about the Code Coverage and Code Overview windows
in the following section.

Using the Code Coverage Tool
As stated earlier the Code Coverage tool is useful for giving you an overview of the
objects that are called when you perform any tasks and the code that is used during
these transactions.

To log code:

1 Click Tools, Debugger, Code Coverage. The Code Coverage window opens.

2 Click Start. The Code Coverage tool is now ready to log code.

3 When you have completed the transactions that you want to monitor, return to the
Code Coverage window. It now contains a list of any tables, forms, reports,
dataports and codeunits that were used.

4 Click Stop.
360

18.3 The Code Coverage Tool
5 Select an object whose code you wish to view. Click Code to open the Code
Overview window:

The Code Overview window displays code for the object that you selected in the Code
Coverage window. Lines of code that were executed during the transaction(s) are
shown in black. Lines of code that were not executed are shown in red.

The Code Overview window displays code in a similar way to the debugger. However,
while you see code being executed in the debugger, the Code Overview window
shows you the end result: the code that has been executed. When a line of code is
executable, a bullet symbol is shown on the left of the line. Only the information for
lines that are marked with a bullet is correct. The lines of code that are not marked with
a bullet are simply displayed in the color of the neighboring code lines.

Important

You must not modify objects while using the Code Coverage tool because this will
produce inconsistent results.
361

Chapter 18. Debugging C/AL Code
362

Chapter 19

Extending C/AL

This chapter describes how you can extend C/AL by using
COM technologies. C/SIDE supports automation servers by
acting as an automation controller and using OCXs (custom
controls).

· What Is COM?

· Using COM Technologies in C/SIDE

· Using C/SIDE as an Automation Controller

· Receiving Events in C/SIDE

· Using Custom Controls from C/SIDE

· Acquiring Controls

Chapter 19. Extending C/AL
19.1 What Is COM?

This is not the place for anything but a very brief explanation of what the terms COM,
OCX, Automation, OLE, ActiveX and so forth mean. The subject is a huge and
complicated one that has been described in a number of good books.

COM and C/SIDE In C/SIDE, you can use COM technologies in two ways: you can use custom controls
(OCXs), and you can use Automation (with C/SIDE in the role of an automation
controller or client). There is a vast array of commercially available OCXs that perform
all kinds of tasks, and you can develop your own. When you use C/SIDE as an
automation controller, you will probably work with programs such as the Microsoft
Office suite of products.

If you are going to develop custom controls yourself, you will probably use tools like
Microsoft Visual C++ or Microsoft Visual Basic. Both products use wizards to make it
very easy to develop COM objects. It is, in fact, entirely possible to develop functional
controls without understanding any of the complex details of COM itself. If you are
going to use existing COM objects (controls or automation servers) from C/SIDE, you
certainly do not need to know anything about COM. Using the functionality provided
by a COM object is no different than using any C/AL function.

If, however, you do want to know more, here is a list of recommended books:

• David Chappell. Understanding ActiveX and OLE. Microsoft Press (1996).

This book gives a broad overview of the subject without going into too much detail.

• Dale Rogerson. Inside COM. Microsoft Press (1997).

This book provides a more technical description.

• Kraig Brockschmidt. Inside OLE, 2nd edition. Microsoft Press (1995).

For those who really want to know the details, this book is very extensive (but it is
also older than the other two books mentioned here).

The very rapid evolution in this area has turned the concepts and the terminology that
is used to describe them into what David Chappell calls "moving targets," which means
that it is no easy task to keep printed documentation updated. The Microsoft Web site
(http://www.microsoft.com) offers a wealth of regularly updated online information,
including the latest specifications of all aspects of COM.

Terminology and History
Parallel with the rapid development of the technology, the terminology used to
describe the technology has changed fast. The following table shows how terms have
been added and meanings have changed as the technology has evolved:

Term Description

OLE version 1.0 OLE is introduced as Object Linking and Embedding, allowing users to
create compound documents (for example, a Microsoft Excel spreadsheet
could be embedded in a Microsoft Word document.)
364

http://www.microsoft.com

19.1 What Is COM?
COM OLE is generalized into COM: the Component Object Model. COM is seen
as an architecture for interaction between software components.

OLE version 2.0 Building on the COM paradigm, OLE version 2.0 refines the linking and
embedding concepts of OLE version 1.0, and adds new concepts such as
OLE Automation. OLE version 2.0 is a suite of (more or less) related
technologies that use COM rather than "just" linking and embedding.

OLE In accordance with the broadening of the concept, OLE is no longer
considered an acronym but a name in its own right (pronounced o-lay).

OLE Automation OLE Automation is the name for the ability of one program to expose any
or all of its capability for another program to use. In other words:
programmability. The preferred term is now Automation, with the program
providing functionality being called the Automation server and the program
that uses this functionality the Automation controller (or client).

OLE Controls Influenced by VBX, Visual Basic Extensions, OLE Controls are defined as
COM objects that meet a certain, well-defined set of specifications. An OLE
Control (also called a Custom Control) is a COM object that can be
"plugged in" and used by a control container. In this way, applications can
be built from reusable (binary) software components. OLE Controls usually
have .ocx as their file name extension.

ActiveX The first specifications for OLE Controls were rather strict and demanded,
among other things, that a control should implement a vast number of
interfaces. With the advent of the Internet and the emergence of the
Internet Explorer as a favored control container, the specifications were
relaxed in order to make it possible to create controls that have a smaller
footprint and therefore will load faster. At the same time, OLE Controls were
renamed ActiveX controls.

DCOM The specifications for DCOM (Distributed COM) were released in 1996.
DCOM expands COM to make communication over a network transparent
to the clients and servers that are involved.

COM+ COM+ is the backward-compatible successor to COM. It enhances COM
with a rich set of new features.

Term Description
365

Chapter 19. Extending C/AL
19.2 Using COM Technologies in C/SIDE

C/SIDE supports COM technologies in two ways: using custom controls (OCXs) and as
an automation controller. This support has a few limitations:

Only non-visual controls are supported. This means that a control cannot be used
to add graphical elements to a C/SIDE object (you cannot, for example, add a third-
party control to a form). The control can, however, display information and interact
with the user in a window of its own.

Exception handling. C/SIDE does not allow the retrieval of information about
exceptions from a control or automation server through the Invoke method of the
IDispatch interface and the EXCEPINFO structure (as described, for example, in Inside
OLE). The samples in the C/OCX Samples – the control and the C/SIDE application that
uses it – show a way to work around this limitation. You can find a description on page
400.

Parameters, Return Values and Data Types
As you can see in the literature about COM, the mechanisms for calling methods in a
control, passing parameters and receiving return values are somewhat complicated.
Using tools like the wizards in Microsoft Visual C++ shields you from most of the
complexities.

You should know, however, that there is not a one-to-one relationship between the
data types that you can use when implementing methods in, for example, Visual C++
and the data types in C/AL. Some of the COM data types are not supported in C/AL
and some have a limitation imposed on their usage.

When you use the C/AL Symbol Menu, you can see the syntax for a method or property
with the return value and the parameters shown with the COM data types.
366

19.2 Using COM Technologies in C/SIDE
The following table shows how you map C/AL data types to COM data types:

The following table shows how you map COM data types to C/AL data types:

C/AL Data Type COM Data Type Comment

Boolean VARIANT_BOOL (VT_BOOL)

Option long (VT_I4)

Integer long (VT_I4)

BigInteger long (VT_14)

Decimal CURRENCY (VT_CY) The CURRENCY type in COM is a special data
type with a fixed point that has 15 digits to
the left of the point and 4 to the right. You
should be aware that the Decimal type in
C/AL does not have a fixed point and can
have a total of 18 digits. This could possibly
lead to some rounding being performed
when a type Decimal number is passed to a
method that expects a CURRENCY. The
server manipulates that number and returns
it as a CURRENCY. No matter how many
digits the original Decimal had to the right
of the decimal point, the returned
CURRENCY will have no more than 4 digits.

Char BSTR (VT_BSTR)

Text BSTR (VT_BSTR)

Code BSTR (VT_BSTR)

Date DATE (VT_DATE)

Time void (VT_VOID)

DateTime DATE (VT_DATE)

Automation TypedObject, UntypedObject
(VT_DISPATCH)

InStream VT_STREAM

OutStream VT_STREAM

Variant VARIANT (VT_VARIANT)

COM Data Type C/AL Data Type Comment

VT_UNKNOWN InStream or OutStream Only the IID_IStream and
IID_SequentialStream interfaces are
supported. If you pass any other IUnknown
interface, an error will occur at runtime.

short (VT_I2) Integer

long (VT_I4) Integer
BigInteger
367

Chapter 19. Extending C/AL
Unsigned char (VT_UI1), SCODE (VT_ERROR) and SAFEARRAY (VT_ARRAY)
You can use the C/AL variant data type to pass unsigned char, SCODE or SAFEARRAY to
another variant that supports these types. You cannot assign them to C/AL data types.

Further remarks When you call a method with a ByRef parameter, the normal C/AL type conversions do
not take place. This means, for example, that if the parameter is of type float, you have
to use a C/AL variable of type Decimal. You cannot use Integer and have C/AL convert
it for you. (Hint: if the value you want to pass has a "wrong" type, when, for example, it
is a value from a database record field, you can assign it to a C/AL variable of the
correct type before calling the COM object method.)

You will sometimes see a COM object method or a property in the C/AL Symbol Menu
that has type IDispatch. This means that the method or property returns or expects a
COM object. In this case, you must use a C/AL Automation variable that has been
declared (through the Subtype) to be the correct COM object. You will have to study
the documentation for the automation server to gain the necessary information.

You will also see properties and methods that do not have one of the "normal" types.
For example, a method in Microsoft Excel can have a return value of type WORKBOOK.

float (VT_R4) Decimal

double (VT_R8) Decimal

CURRENCY (VT_CY) Decimal The CURRENCY type in COM is a special data
type with a fixed point, which has 15 digits
to the left of the point and 4 to the right.
You must note that the Decimal type does
not have a fixed point and can have a total
of 18 digits.

DATE (VT_DATE) Date
DateTime

The COM DATE type contains both a date
and a time value. C/AL has Date and Time as
separate data types. Therefore, the time part
of a COM DATE type will be lost when the
COM DATE type is mapped to the Date C/AL
data type.
To keep the date and the time, map the
COM Date type to the C/AL DateTime data
type.

BSTR (VT_BSTR) Text

VARIANT_BOOL
(VT_BOOL)

Boolean

TypedObject/
UntypedObject
(VT_DISPATCH)

Automation/OCX

VT_EMPTY Text

VARIANT
(VT_VARIANT)

Variant

COM Data Type C/AL Data Type Comment
368

19.2 Using COM Technologies in C/SIDE
This means that the automation server has implemented a USERDEF type. C/SIDE
supports USERDEF types in two contexts: IDispatch and Enumeration.

If the USERDEF type is an IDispatch, it means that it is an interface (sometimes also
called class or object) with a specific GUID. You will have to use the same object for a
return value or parameter. You do this by creating an Automation variable with the
correct Subtype.

For example, Microsoft Excel has a number of methods that return a WORKBOOK
variable. This means that you must declare a variable of type Automation and subtype
'Microsoft Excel 8.0 Object Library'.Workbook.

If the USERDEF type is an Enumeration, you should know that you cannot use the
symbolic name (for example, xl3DPie) but instead must use the enumerator (for
example, -4102). For Microsoft Office products, you can find this value by using the
VBA Object Browser (see page 382).
369

Chapter 19. Extending C/AL
19.3 Using C/SIDE as an Automation Controller

The following description outlines the procedures for using an automation server from
C/SIDE. As you will see, there are very few steps required that are specific to C/SIDE
(C/AL). Using an automation server consists of five steps:

1 Declare the creatable (top-level) interface (class) of the automation server as a
variable of data type Automation.

2 Declare all the other interfaces (classes) as variables of data type Automation.

3 Use the C/AL function CREATE on the variable declared in step 1. Do not use CREATE
on any other variables.

4 Use the methods and properties of the automation server in your C/AL code.

5 You can CLEAR (destroy) the top-level object if you want. Otherwise, it will be
destroyed automatically when the variable goes out of scope.

You write most of your code during step 4 using the methods and the properties of the
automation server. The syntax and the semantics of these methods and properties are
documented in the documentation for each automation server. Using these methods
and properties in C/AL does not involve any new or changed syntax.

The best way to learn how to use automation is to look at actual solutions. The
following two sections show you how to use Microsoft Word and Microsoft Excel,
respectively.

Writing a Letter In Microsoft Word
In this example, you will:

Implement functionality that writes a letter in Microsoft Word when you click a menu
item on the Customer card. The letter will only be created if the customer has bought
goods for more than LCY 2,500 during the past year. If the customer fulfills this
requirement, the letter offers a 3% discount.

Most of the information you need to transfer to Word is in the Customer table. This
includes the information about the customer that you will use in the letterhead, such as
the name and the address of the customer and the name of the contact to whom you
will address the letter.

The Customer table contains a FlowField called Sales (LCY) that contains the financial
information that you need, namely the aggregated sales for the customer. For the sake
of this example (where the emphasis is on using automation), you will simply use this
value as it is. Please note that this is not what you would do in "real life." You would
have to set up an appropriate date filter to get the sales for the past year only.

You also need to retrieve the information about your own company that you will use in
the letterhead and in the greeting of the letter. This information is contained in the
Company Information and the User tables.

Where to Place Automation Code
You will put all the code in a separate codeunit that is called from a menu item on the
Customer card.
370

19.3 Using C/SIDE as an Automation Controller
There are two major concerns that you must consider when you are deciding where to
place the code that uses automation:

• The first is the fact that the automation server must be installed on the computer
that compiles an object that uses automation. If you must recompile and modify an
object on a computer that does not have the automation server installed on it, you
will have to modify the code drastically in order to compile it again. It is therefore
recommended that you isolate code that uses automation in separate codeunits.

• The second concern is performance. There is some overhead involved in creating an
automation server (using the CREATE system call). If the automation server is to be
used repeatedly, you will gain better performance by designing your code so that
the server is created only once (as opposed to making a series of CREATE/CLEAR
calls).

That said, it is obvious that these two concerns will sometimes clash and you will have
to make some trade-offs, based on the actual context in which your code will be used.

In this example, you have chosen not to put the automation code on the customer
card, but to isolate it in a separate codeunit. Performance could be improved by
putting the code on the Customer card as this would mean that you don’t have to
open and close Word for each letter that is created in the session.

However, there is a simple workaround for this problem: if Word is already open when
it is called from the code, the running instance is reused. This means that the user can
simply open Word "manually" or just not close it after creating the first letter.

Background Information about Using Word in this Example
You want to extract and transfer data about one customer at a time to Word. You also
want to initiate this and the subsequent processing in Word from the customer card.

This approach to mail merge is different from the mail merge you can achieve with
C/ODBC, which is better suited for bulk processing (creating a large number of letters).

However, this approach forces you to use Word in a slightly unorthodox way. You need
some placeholders so that you can put the information in predefined places in a
template. Unfortunately, there is no straightforward way to do this without using the
regular mail merging facilities in Word.

You will therefore insert a number of fields into the Word template and give these
fields convenient mnemonic names that correspond to the names of the C/SIDE record
fields you are going to use.

To make this work, your C/AL code must make two extra calls to Word. You must call
ActiveDocument.Fields.Update before starting to use the fields. After you have
transferred all the information, you must call ActiveDocument.Fields.Unlink. This
ensures that you can successfully use the Word fields as placeholders.

One more thing, while you can give the fields names like Customer or Address, you will
have to reference them by indexing into the Fields collection of the document. This can
make the C/AL code harder to understand.

Creating the Template in Word
The first thing that you must do is prepare the template that you will use to create the
letters to the customers that qualify for a discount.
371

Chapter 19. Extending C/AL
To create the template:

1 Open Word and open a new document.

2 Click Insert, Field and add a field from the Mail Merge category called MergeField.

3 Enter Contact as the field name.

The simple template that you are going to use in this example should contain the
following fields:

4 Create these six fields and save the Word document as Discount.dot.

Creating the Codeunit and Declaring the Variables
The next step is to create the codeunit that calls Word and creates the letter.

1 Open the Object Designer (SHIFT+F12), and click Codeunit, New to create a new
codeunit.

2 Click View, Properties (SHIFT+ F4) to open the Properties window of the codeunit.

3 In the TableNo field, click the AssistButtonp to open the Table List window.

4 In the Table List window, select the Customer table and click OK:

By setting the TableNo property to the Customer table, you get a very neat
connection between the Customer card and this codeunit. Later, you will add the
menu item that calls the codeunit to the Customer card. The codeunit will be called
with the record that is currently selected in the Customer card as its current record.
You do not have to do anything special to coordinate the two.

Field Name Contains Underlying Table

Name The name of the customer. Customer

Address The address of the customer. Customer

Sales (LCY) The total amount that the customer has purchased
from you.

Customer

Contact The name of your contact person at the customer. Customer

Company Name The name of your company. Company
Information

User Name The name of the person generating this letter. User
372

19.3 Using C/SIDE as an Automation Controller
Declaring the
variables

Now you must declare the variables that you need.

1 Click View, C/AL Globals.

2 First, you declare the top-level (creatable) class of Word. The name of this class is
Application.

Enter wdApp as the name of a new variable, and select Automation as the data type.

3 In the Subtype field, click the AssistButton k and the Automation Object List
window appears:

This window is used to select the class of the automation server that this variable
refers to. However, you must first select an automation server.

4 In the Automation Server field, click the AssistButtonp and the Automation
Server List window appears:
373

Chapter 19. Extending C/AL
This is a list of the automation servers that are installed on the computer.

Scroll down to Microsoft Word, and select it:

5 Click OK and the Automation Server List window closes. You can now see that the
Automation Object List window has been filled in with a list of all the classes in the
Microsoft Word 11.0 Object Library:

6 Select Application, and click OK.

You have now defined the creatable (top-level) class of Word as a variable:
374

19.3 Using C/SIDE as an Automation Controller
7 You need two more classes from Word for this example: Document and Range. Go
ahead and declare the variables in the same way as you did for Application.

The C/AL Globals window should look like this when you are finished:

8 You also need to define a few more variables: two record variables that point to the
Company Information and User tables respectively, and a text variable to hold the
name of the template for the Word letter you are writing. Setting up these variables
is straightforward.

The C/AL Globals window should look like this when you are finished:

Remember to change the length of the TemplateName text variable from 30 to 250.

Writing the C/AL Code
Before you start writing the part of the C/AL code that uses automation, you must do
some initial processing.

Initial processing You start by calculating the Sales (LCY) FlowField. Then you check whether or not the
customer qualifies for a discount. Finally, you retrieve the information from the
Company Info and User tables that you use to fill in some of the fields in the letter.

CALCFIELDS("Sales (LCY)");

IF ("Sales (LCY)" < 2500) THEN

EXIT;

CompanyInfo.FIND;

UserInfo.GET(USERID);
375

Chapter 19. Extending C/AL
Creating the
automation server

You must create an instance of Word before you can use it. The C/AL function CREATE
does exactly this. You call CREATE like this:

CREATE(wdApp);

Note that CREATE has an optional argument, NewServer, which by default is FALSE.
This means that if an instance of the automation server is already running, it will be
reused. If you had set NewServer to TRUE, as in CREATE(wdApp, TRUE), you would
have requested a new instance of Word. Note that ultimately the automation server
itself can control whether or not it can be reused or not (see the documentation for the
server in question if this aspect is important for your application.)

Adding a new
document

Now you will add a new document to Word that uses the template you designed
earlier:

TemplateName := 'C:\Documents and Settings\All Users\Discount.dot;

wdDoc := wdApp.Documents.Add(TemplateName);
wdApp.ActiveDocument.Fields.Update;

Because the Add method of the Documents collection requires that you pass the path
to the template by reference, you must set up the TemplateName variable to hold this
information. you will get a compilation error if you try to put the path into the call as a
literal string.

Take a look at the syntax string for the Documents property of wdApp (the Microsoft
Word Application class):

If you open the online Help of Microsoft Word Visual Basic for the Documents
property, you can see that the Documents property returns a Documents collection
that represents all the open documents. You can also see that the Documents
collection object has an Add method, and that the Add method has this syntax:

expression.Add(Template, NewTemplate, Document Type, Visible)

where expression is a required argument, and it has to be an expression that returns a
Documents object. All of the arguments are optional. You will use Template to open a
new document based on your template.

Now look at the syntax in the C/AL Symbol Menu again. Note that the Documents
property returns an object of type DOCUMENTS, a user defined type. This means that
the property returns a Documents class (or IDispatch interface). This information helps
the compiler perform a better type check during compilation.
376

19.3 Using C/SIDE as an Automation Controller
It also means that the statement:

wdDoc := wdApp.Documents.Add(TemplateName);

succeeds and can pass both the compile-time and the runtime type checks.

Finally, the Add method returns a Document class. While you did not have to declare a
C/AL variable for the "interim" Documents class, you have declared a variable for this
return value, wdDoc.

The third line (wdApp.ActiveDocument.Fields.Update;) contains a call that must
be made to ensure that the template works as intended.

Transferring data to
Word

Now you are ready to transfer the actual data from the Customer record to the
placeholder fields in the Word document.

You have set up the first three fields in the template so that they can contain the
contact, name and address of the customer and you can therefore transfer the data
with the following code:

wdRange := wdAPP.ActiveDocument.Fields.Item(1).Result;
wdRange.Text := Contact;
wdRange.Bold := 1;

wdRange := wdAPP.ActiveDocument.Fields.Item(2).Result;
wdRange.Text := Name;
wdRange.Bold := 1;

wdRange := wdAPP.ActiveDocument.Fields.Item(3).Result;
wdRange.Text := Address;
wdRange.Bold := 1;

Again, you are tweaking Word here. You cannot use the fields directly as variables (and
do an assignment such as ...Fields.Item(3) := Address). Instead, you use the
Result property of the field. This property returns the result of the field as a range. You
place this range in the third automation variable that you declared, wdRange.

Then you can set the Text property of the range to the desired values – the name of
your contact person and the name and address of the customer. Finally, you turn on
the bold formatting that the text would otherwise be normal.

Using Default Members

The documentation for Microsoft Word Visual Basic uses the following syntax:
wdApp.ActiveDocument.Fields(3).Result
As you can see you use a slightly different syntax in the examples:
wdApp.ActiveDocument.Fields.Item(3).Result
This is because the Item method is the default member for the Fields collection. Visual
Basic uses this method if the programmer does not specify an alternative method.
However, in C/SIDE you must explicitly specify the Item method.
377

Chapter 19. Extending C/AL
You must remember that the data you are transferring must be in text format. If it is
not in text format, you get a compilation error. As you can see in the following picture,
wdRange.Text expects its arguments to be of type BSTR, which maps to either Text or
Code in C/SIDE:

This means that any data that is not Text or Code must be converted before it is passed
to Word.

In this example you need to transfer the Sales (LCY) field, to Word. This field is a
Decimal field, so you have to use the FORMAT function to convert it to Text. The FORMAT
function has the following syntax:

String := FORMAT(Value [, Length] [, FormatNumber | FormatString])

You can transfer and format the data from the Sales (LCY) field with the following
code:

wdRange := wdAPP.ActiveDocument.Fields.Item(4).Result;

wdRange.Text := FORMAT("Sales (LCY)");
wdRange.Bold := 0;

Now, all that remains is to transfer the data from the other tables. The following two
statements transfer the information you retrieve from the Company Information and
User tables:

wdRange := wdApp.ActiveDocument.Fields.Item(5).Result;

wdRange.Text := CompanyInfo.Name;

wdRange := wdApp.ActiveDocument.Fields.Item(6).Result;

wdRange.Text := UserInfo.Name;

Finishing the code After you have transferred the data to Word, you must enter two more statements to
finish the processing:

wdApp.Visible := TRUE;

wdApp.ActiveDocument.Fields.Unlink;

The first statement opens Word and shows you the letter that was created. The second
statement completes the tweaking of Word and makes the fields work as placeholders.

Save and compile Finally, save and compile the codeunit and give it a number and a name. In this
example, you have used the name Discount Letter.
378

19.3 Using C/SIDE as an Automation Controller
To-do list

Although this code will work, you must add a few things to make it a ready for the real
world:

• It is not a good idea to use a hard-coded template name. It should be kept in a
table, and the user should select it from a form. You will probably have different
templates for the different kinds of letters that you want to send to your customers.

• You should add some error-handling code. For example, the CREATE call fails if the
user does not have Word installed or if the installation has been corrupted. You
should check the return value of CREATE and give an appropriate message if it fails.

• The user should get a message if the customer does not qualify for the discount. In
the example, the codeunit closes without further ado.

Calling the Codeunit from the Customer Card
The final task is to ensure that you can call the codeunit from the Customer card. You
will add a menu item to the Customer menu button.

1 Open the Object Designer (SHIFT+F12) and click Form.

2 Select the Customer Card form (Form 21) and click Design.

3 Right-click the Customer menu button and click Menu Items in the menu.
Alternatively, you can click View, Menu Items to open the Menu Designer:

4 Scroll down to the bottom of the list of menu items.

5 Click Separator to insert a separator line.

6 Fill in the Caption field with the text you want to appear in the menu (here, you
have used Word Letter).

7 In the Action field, click the AssistButton f and select RunObject.
379

Chapter 19. Extending C/AL
8 In the RunObject field, click the AssistButton p and select the codeunit you have
created:

9 Save and compile the Customer Card.

However, the letter that you have just created only contains six fields and no body text.
Before you can use this letter in a ’real’ situation you will probably need to add some
more fields, such as the name and address of your own company, the date and the
currency code as well as the main text of the letter. It will also need some formatting to
make it look more attractive.

However, if you alter the order in which the fields appear in the template, you must
remember to change the numbering of the fields in the codeunit to ensure that the
correct data is inserted into the appropriate fields.
380

19.3 Using C/SIDE as an Automation Controller
Graphing With Microsoft Excel
In this example, you will transfer data from the G/L Entry table to Microsoft Excel and
create a graph. The main aim of this example is to show how to handle enumerations.

Background Information about This Example
The aim of this example is to create a graph in Microsoft Excel that shows the
distribution of personnel expenses by departments. In the Chart of Accounts, you can
see that Total Personnel Expenses is the total of accounts 8700 to 8790. In the
Dimension Value table, you can see that there are three departments: ADM, PROD
and SALES.

You will create a codeunit that retrieves this data from the G/L Entry table, transfers it
to Excel and creates a graph. You will run the codeunit directly from the Object
Designer, but in a real application you would call it from an appropriate place, for
example, from a menu in the Chart of Accounts window.

Creating the Codeunit: Declaring Variables
The first step is to define the necessary variables:

1 Open the Object Designer, and click Codeunit, New to create a new codeunit.

2 Click View, C/AL Globals.

3 Define a Record variable that has the G/L Entry table as Subtype. Here, you have
called it GLEntry.

4 Define an Automation variable with Microsoft Excel 11.0 Object Library as
Automation Server and Application as Automation Object. Call it xlApp.

5 Define an Automation variable with Microsoft Excel 11.0 Object Library as
Automation Server and Workbook as Automation Object. Call it xlBook.

6 Define an Automation variable with Microsoft Excel 11.0 Object Library as
Automation Server and Worksheet as Automation Object. Call it xlSheet.

7 Define an Automation variable with Microsoft Excel 11.0 Object Library as
Automation Server and Charts as Automation Object. Call it xlChart.

8 Define an Automation variable with Microsoft Excel 11.0 Object Library as
Automation Server and Range as Automation Object. Call it xlRange.

After these steps, the C/AL Globals window should look like this:
381

Chapter 19. Extending C/AL
Creating the Codeunit: Initial Steps
The code itself is quite simple. First, you set the key you need for the G/L Entry table
and then use SETFILTER to select the accounts you are interested in:

GLEntry.SETCURRENTKEY("G/L Account No.","Business Unit Code",

"Global Dimension 1 Code","Global Dimension 2 Code",

"Close Income Statement Dim. ID","Posting Date");

GLEntry.SETFILTER("G/L Account No.",'8700..8790');

Then, you create an instance of Excel:

CREATE(xlApp);

Next, you add a new workbook to Excel:

xlBook := xlApp.Workbooks.Add(-4167);
xlSheet:= xlApp.ActiveSheet;

xlSheet.Name := 'Personnel Expenses';

In the first line, you use the Add method of the Workbooks collection to return a new
workbook. Then you use the ActiveSheet property of the Application class to make sure
that what you do next affects the active sheet of the new workbook. In the third line
you give the sheet a name.

Now you are probably wondering what the argument, -4167, in Add is. If you look in
the Microsoft Excel Visual Basic online Help, you can see that the Add method as it
applies to the Workbooks object has one argument, Template. It is of type VARIANT.
The description says:

If this argument is a constant, the new workbook contains a single sheet of the
specified type. Can be one of the following: XlWBATemplate constants: xlWBATChart,
xlWBATExcel4IntlMacroSheet, xlWBATExcel4MacroSheet, or xlWBATWorkSheet.

You want to create a workbook with a single sheet. Judging from the description, you
should give an XlWBATemplate constant with the value xlWBATWorkSheet as the
Template argument.

Nevertheless, you are passing the number -4167. The following paragraphs explain
why.

Enumerations As described on page 368, this particular VARIANT is an enumeration.

There are two types of enumerations: those that are USERDEF types, and those that are
not. This is not a USERDEF type, so it looks like a VARIANT in the C/AL Symbol Menu.
You have to look in the Microsoft Excel Visual Basic Help to figure out that it is actually
an enumeration. The hint is that the arguments can be constants with names like xl* (in
Microsoft Word, they would be wd*, and in Microsoft Outlook ol*).

In C/SIDE, you cannot use the symbolic name (xlWBATWorkSheet). You have to use the
enumerator (-4167).

To find this value:

Finding an
enumerator value

1 Open Excel.

2 Click Tools, Macro, Visual Basic Editor.
382

19.3 Using C/SIDE as an Automation Controller
3 Click View, Object Browser.

4 Select Excel in the list box in the upper left-hand corner of the form.

5 Scroll down in the Classes list (to the left) until you can see XlWBATemplate, and
select it.

6 In the Members of ‘XlWBATemplate’ list to the right, select xlWBATWorkSheet.

7 The value can now be seen in the information pane at the bottom of the form:

Alternatively, you can try this method:

A shortcut to the
enumerator

Create a macro in Excel, and call the MsgBox function:

Sub x()

MsgBox (xlWBATWorksheet)
End Sub

When you run the macro, a box will pop up with the value of the enumerator:

Creating the Codeunit: Transferring Data
To transfer the data, you need to do two things: calculate the data and transfer the
results of the calculation. To calculate the data, do the following:

GLEntry.SETRANGE("Global Dimension 1 Code", 'ADM');
GLEntry.CALCSUMS(Amount);

You use SETRANGE to filter the entries in the G/L Entry table on the Global
Dimension 1 Code field. The first department is ADM (Administration). Then, you use
CALCSUMS(Amount) to get the sum for the ADM department.

Now you can transfer the data to Microsoft Excel:

xlSheet.Range('A2').Value := 'Administration';

xlSheet.Range('A3').Value := GLEntry.Amount;
383

Chapter 19. Extending C/AL
You repeat this for the other two departments, PROD and SALES:

GLEntry.SETRANGE("Global Dimension 1 Code", 'PROD');

GLEntry.CALCSUMS(Amount);

xlSheet.Range('B2').Value := 'Production';
xlSheet.Range('B3').Value := GLEntry.Amount;

GLEntry.SETRANGE("Global Dimension 1 Code", 'SALES');

GLEntry.CALCSUMS(Amount);

xlSheet.Range('C2').Value := 'Sales';

xlSheet.Range('C3').Value := GLEntry.Amount;

This is how the data looks once it is transferred to Microsoft Excel:

Creating the Codeunit: Making the Graph
The final step is to create the graph. You will use the ChartWizard method to create a
3D pie chart. This is a fast and simple way to do it. You can more tightly control the
design of the graph by setting it up using the methods and properties of the various
Chart objects (ChartArea, Legend, and so on).

First, you must define a range for the data in the graph:

xlRange := xlSheet.Range('A2:C3');

Then, you add a new chart sheet and give it a name:

xlChart := xlBook.Charts.Add;

xlChart.Name := 'Personnel Expenses - Graph';

Finally, the following call creates the graph:

xlChart.ChartWizard(xlRange,-4102,7,1,1,0,0,'Personnel Expenses');

Use the first eight of the optional arguments of the ChartWizard method:

Argument Description Value

Source The range that contains the
source data for the new chart

xlRange – the object returned by
xlSheet.Range(‘A2:C3’).
384

19.3 Using C/SIDE as an Automation Controller
And, finally, you make Excel visible:

xlApp.Visible := TRUE;

Excel produces a General Protection Fault error when you close a new Excel worksheet
created while Excel is invisible. To solve the problem, you can make Excel visible
immediately after you create a new worksheet. Alternatively, you can make Excel visible
just before you create a new Excel worksheet and then make it invisible again
immediately after creating the new Excel worksheet. In this case you would write:

xlApp.Visible := TRUE;

xlBook := xlApp.Workbooks.Open(FileName);
xlApp.Visible := FALSE;

The graph looks like this:

Gallery The chart type -4102 – the enumerator for the xl3DPie
XlChartType enumeration. See "Finding an
enumerator value" on page 382.

Format The option number for the built-
in autoformats

7 – we found this one by trial and error,
because the Excel documentation does not
say much about it.

PlotBy Specifies whether the data for
each series is in rows or columns

1 – the enumerator for the xlRows XlRowCol
enumerator.

CategoryLabels An integer specifying the
number of rows or columns
within the source range that
contain category labels.

1 – you have one row with category labels
(the department names).

SeriesLabels An integer specifying the
number of rows or columns
within the source range that
contain series labels

0 – you do not have series labels in your
data.

HasLegend TRUE to include a legend 0 – this value works.

Title VARIANT with the title of the
chart

You pass a string, ‘Personnel Expenses’. This
works and the runtime conversion succeeds.

Argument Description Value
385

Chapter 19. Extending C/AL
19.4 Receiving Events in C/SIDE

C/SIDE can receive events from the components (automation servers and OCXs) that it
controls. When you declare a global variable of data type Automation, you can specify
whether you want to receive events. You do so by setting the WithEvents property for
the variable to Yes. This automatically generates AL triggers for the events that the
component provides. A trigger name consists of the name of the automation variable
followed by "::<Event name>." For example, if you declare an automation variable with
the name MyEventVar, and the component provides the event MessageReceived(...),
the name of the trigger is MyEventVar::MessageReceived(...). For information about the
limitations on event triggers, see page 390.

In the following example, you enable C/SIDE to receive events from the Dynamics NAV
Communication Component.

For more information about the Dynamics NAV Communication Component and the
way in which it handles the exchange of data streams between NAV Application Server
and a bus adapter, see the online Help Development Guide for Communication
Components (devguide.chm). This is normally stored in C:\Program Files\Common
Files\Dynamics NAV\Communication Component.

The Dynamics NAV Communication Component and the bus adapter are installed as
part of the NAV Application Server. These two components must be installed before
you can implement the following example.

Receiving Notification of Inbound Documents
Before reading on, it will be helpful for you to read the example, "Writing a Letter In
Microsoft Word" on page 370.

In the following example, you create two codeunits: one that enables C/SIDE to receive
an event – notification of an inbound stream, and one that enables the client to send
the stream. Needless to say, in a real life situation the same client would not both send
and receive the stream.

To send and receive streams, C/SIDE depends on the existence of two external
components, the Dynamics NAV Communication Component and a socket bus
adapter.

Receiving the Event
In this example you begin by creating the codeunit that allows the client to receive the
event.

Declaring the
variables for the
external components

The first step is to create the codeunit and declare some variables of the data type
Automation for both components. For each variable, you must also select an
automation server and the class of the automation server that the variable refers to.
386

19.4 Receiving Events in C/SIDE
Declare the following variables:

To declare these variables:

1 Click View, C/AL Globals to open the C/AL Globals window.

2 Enter CC2 as the name of the first variable and select Automation as the data type.

3 In the Subtype field, click the AssistButton k to open the Automation Object List
window.

4 In the Automation Server field, click the AssistButton p to open the Automation
Server List window.

5 Select Dynamics NAV Communication Component version 2 and click OK.

Variable Name Data Type Subtype

CC2 Automation Dynamics NAV Communication Component version
2.CommunicationComponent

SBA Automation Dynamics NAV Socket Bus Adaptor.SocketBusAdapter

InMsg Automation Dynamics NAV Communication Component version
2.InMessage

InS InStream

txt Text
387

Chapter 19. Extending C/AL
6 The classes of the Dynamics NAV Communication Component are now visible in the
Automation Object List window.

7 Select the class called CommunicationComponent.

8 Declare all the other variables listed earlier and the C/AL Globals window should
look something like this:

Setting the
WithEvents property

Now that you have declared the variables for the Dynamics NAV Communication
Component and a bus adapter, you must set the WithEvents property for the Dynamics
NAV Communication Component to Yes. By doing so, you subscribe to events from the
Dynamics NAV Communication Component. This means that C/SIDE can receive
notification of any inbound streams.

To set the WithEvents property:

1 Open the C/AL Globals window for this codeunit and select the variable you
created earlier called CC2.
388

19.4 Receiving Events in C/SIDE
2 Open the Properties window and click the AssistButton f in the Value field of the
WithEvents property and select Yes:

Setting the WithEvents property to Yes automatically creates a trigger in the codeunit
for each event that the selected subtype of the global variable provides. In the case of
the Dynamics NAV Communication Component, it creates the following trigger:

Creating the
automation servers

Before you can use the Dynamics NAV Communication Component and a bus adapter,
you have to create instances of them. To do this, you use the C/AL function CREATE. To
call CREATE, enter the following code in the OnRun trigger of the codeunit:

This code creates an instance of the Dynamics NAV Communication Component and a
bus adapter. The bus adapter now uses port 8079 on the local computer.

Writing code in the
trigger

The next step is to write the code in the MessageReceived trigger that determines what
happens when the event occurs.
389

Chapter 19. Extending C/AL
Enter the following code in the MessageReceived trigger:

This code locates the input stream and uses the InStream.EOS function to find out
whether or not the input stream has reached the End of Stream (EOS). It then uses the
InStream.READ function to read the InStream object. The data is read in binary
format. Finally, the code displays the text from the instream in a message.

Incidentally, the InStream.READ function has an optional parameter:
InStream.Read(Variable, [Length]), that allows you to specify the number of
bytes that you want to read from an InStream object. For more information about
streams, see the C/SIDE Reference Guide online Help.

Important

If you delete a global variable to which event triggers are associated, the event triggers
and the code they contain are also deleted. Furthermore, if you change the Data Type
or Subtype of a global variable, all the event triggers associated with this variable and
their code are deleted.

Save and compile the codeunit.

Event Triggers
When you have enabled C/SIDE to receive events from a component that it controls,
for example, an automation server, you should be aware of the following limitations
and restrictions. The information is also relevant for component developers.

There are certain limitations on the triggers that are automatically generated for the
events, which the component provides. Furthermore, incoming data is also subject to
certain restrictions.

Limitations on the Triggers
• C/SIDE only supports the default outgoing interfaces, that is, the source interfaces,

which are defined by the automation variable. If more than one outgoing interface is
defined by the automation server for a class, only event triggers for the default
outgoing interface are generated in the C/AL code.

• Function calls can have a maximum of 39 parameters.
• Prototype text strings for functions can contain a maximum of 1024 characters.
• The connectable object strategy in COM is used to connect Dynamics NAV and the

automation server. The Sink object defined in this strategy and implemented in
390

19.4 Receiving Events in C/SIDE
Dynamics NAV only supports the IDispatch interface (and IUnknown). It is therefore
expected that the automation server calls on IDispatch when executing events.

• Parameter names are truncated to a maximum of 30 characters.
• There are no return values on event triggers.
• The variable name along with "::" and the event trigger name are truncated to a

maximum of 30 characters.

Restrictions on Incoming Data
All received data is copied to an internal data type, which can handle any data type
that COM allows. No data is lost in this conversion and there is no check for valid C/AL
data types. The data remains in this internal data type until it is used inside the trigger.
When the data is used, it is converted to the appropriate C/AL data type.

However, if the data type is Variant, no conversion occurs. No data is lost in the
conversion and all the required checks are made.

If the conversion cannot be performed successfully because there is an invalid data
type, or because the data is outside the range, the event trigger causes an error
message to be displayed and terminates execution. Note that if the data is never used
in the event trigger, no checks for valid data, data type and data range are performed.

If a parameter is a VAR parameter (that is, called ByRef) and the data is used inside the
event trigger, there is an implicit conversion just before the event trigger returns. A
check is made to see if the conversion can be performed. If the conversion cannot be
performed, an error message is shown and the event trigger terminates.

Sending the Stream
The next step in this example is to create the codeunit that sends the stream.

1 Start by creating a new codeunit and declaring the following variables:

Variable Name Data Type Subtype

CC2 Automation Dynamics NAV Communication Component version
2.CommunicationComponent

SBA Automation Dynamics NAV Socket Bus Adaptor.SocketBusAdapter

OutMsg Automation Dynamics NAV Communication Component version
2.OutMessage

outS InStream
391

Chapter 19. Extending C/AL
The C/AL Globals window should look something like this:

Sending the message 2 Add the following code to the OnRun trigger of the codeunit:

This code creates an instance of the Dynamics NAV Communication Component and
a bus adapter. It then creates the outmessage. If the outmessage cannot be created
it returns NULL.

The ICommunicationComponent::CreateOutMessage function has a destination
parameter. This parameter has the following syntax:

Bus adapter type://destination

For example:

Named pipe://myServer/myPipe

Sockets://myserver::portnumber

Message queue://MyMessageQueueServer\MyQueue

The socket bus adapter is used to send the outmessage to Port 8097. The text of the
outmessage is then specified.

3 Save and compile the codeunit.

Running and Testing the Example
The last step in this example is to test the codeunits that you have just created.

1 Start a Dynamics NAV client and open the database that contains the codeunits that
you have just created.

2 In the Object Designer, select the codeunit that receives the stream and click Run.
392

19.4 Receiving Events in C/SIDE
This is a single instance codeunit and is therefore loaded into memory and stored
there.

3 Start another Dynamics NAV client and open the same database.

4 In the Object Designer, select the codeunit that sends the stream and click Run.

5 Switch back to the first client and you should see that it is receiving the stream and
displaying the text that you defined earlier in the codeunit that sends the stream.
393

Chapter 19. Extending C/AL
19.5 Using Custom Controls from C/SIDE

As mentioned in "Terminology and History" on page 364, Custom Controls are (or
were) also known as OLE Controls and ActiveX Controls. They have also been called
OCXs because they often have the file name extension .ocx.

Terminology in
C/SIDE

In C/SIDE, the term Custom Control is used, for example, in the Tools menu. When you
want to use a control, you define a variable (global or local) of type OCX and reference
the control as the subtype of this variable.

Simple Example
To show you how simple it is to use a custom control in C/SIDE, we will look at the
C/FRONT OCX. C/FRONT comes with a Help file that contains help for both the
methods and the properties for the control as well as help for the sample application.

In this example, you will build a simple form that uses the C/FRONT OCX to connect to
a server, open a database, open a company of your choosing and counts the number of
records that exist in a table that you specify. This form will have access to the functions
and properties supported by the C/FRONT OCX.

Installing and Registering the Control
A control must be physically installed on the computer before you can use it. But a
control must also be registered with the operating system before it can be used.

If the control has been installed physically by copying it to the hard disk, but has not
yet been registered, you can follow this procedure to register the control from within
C/SIDE:

1 Copy the control from the distribution media to the hard disk. The C/FRONT folder
contains a readme.txt file with more information.

2 On the menu bar, click Tools, Custom Controls... to open the Custom Controls
window:

3 Click Control, Browse to open a standard Windows dialog that you use to locate the
OCX you want to register.

4 When you have located the control, select it and click Open.
394

19.5 Using Custom Controls from C/SIDE
The control is now registered with the system. You receive a confirmation message
once the registration is complete. Click OK to return to the Custom Controls window
and the control you have just added appears in the list.

Using the Control in C/AL
The control must be declared as either a global or a local variable before you can
access its methods and properties from C/AL. Once you have done this, you can use the
methods and set the properties, and you can see the methods and the properties in the
Symbol Menu. If you press F1 while a method or a property is selected in the Symbol
Menu, you will get context-sensitive Help for this method or property from the Help
file of the control (provided there is a Help file. It is up to the creator of the control to
provide such a file). C/FRONT comes with a Help file called cfont.chm. To open this
Help file, double-click it.

Declaring the Control as a Variable
To declare the control as a variable:

1 In the Object Designer, create a new blank form that is not based on any table.

2 On the menu bar, click View, C/AL Globals to open the following window:

3 Give the variable a name (this example uses cfront), and select OCX as the data type.
In the Subtype field, click the AssistButton p to open the following window:

4 Find the control on the list, select it and click OK.
395

Chapter 19. Extending C/AL
5 When you move the cursor out of the Subtype field the name of the control
appears in the field and the window should look like this:

6 Declare the following variables:

7 The C/AL Globals window should look something like this:

8 Select the variable called Driver and open the Properties window (Shift+F4). In the
Value field of the OptionString property enter NDBCS,NDBCN.

Name DataType Subtype Length

TableNo Integer

MyCompany Text 50

MyDatabase Text 50

MyServerName Text 50

Driver Option
396

19.5 Using Custom Controls from C/SIDE
All these variables have now been added to the C/AL Symbol Menu and you now have
access to all the methods and properties contained in the C/FRONT OCX. To check this,
click View, C/AL Symbol Menu (F5) to open the C/AL Symbol Menu window:

As you can see the C/FRONT methods and properties are now available. Select one of
the methods or properties in the right hand panel and click F1. The C/FRONT online
Help opens and displays the help for the method or the property that you selected.

Adding some text
constants

The next step is to create the text constants that this form will use.

Open the C/AL Globals window and create the following text constants:

Designing the Form
The first step in designing the form is to add the fields that you want the form to
contain.

Adding the fields 1 Open the Toolbox and add four text boxes and two option buttons to the form.

2 Add labels to the text boxes and the first option button and name them Server,
Database, Company, Table Number and Server Type, respectively.
397

Chapter 19. Extending C/AL
3 The form should look something like this when you are finished:

You can always reposition the fields to suit your design.

4 Select the server text box and click View, Properties (Shift+F4) to open the
Properties window.

5 In the Value field for the SourceExpr property, click the AssistButton k and the C/AL
Symbol Menu window opens.

6 Select MyServerName and ensure that the Paste Arguments check box is not
selected and click OK.

The text box on the form should now contain the following text:
<=MyServerName>

7 Repeat this procedure for the other three text boxes adding the MyDatabase,
MyCompany and TableNo variables to the corresponding text box.

8 Select the first option button and in the Properties window enter the following
values:

9 Select the second option button and in the Properties window enter the following
values:

Property Value

Caption SQL

SourceExpr Driver

OptionValue NDBCS

Property Value

Caption Dynamics NAV

SourceExpr Driver

OptionValue NDBCN
398

19.5 Using Custom Controls from C/SIDE
The form should now look something like this:

Adding the Code to the Form
Now that you have created the basic form it is time to add the code that will make it
work.

In this example, you will place most of the code in the OnPush trigger of a command
button at the bottom of the form.

1 Open the form in the form designer and add a command button to the form.

2 Select the command button and open the Properties window (SHIFT+F4) and enter
Connect as the name and the caption.

3 Select the command button and click View, C/AL Code (F9) to open the C/AL Editor.

4 Enter the following code in the OnPush trigger:

CLEAR(cfront);

cfront.ConnectServerAndOpenDatabase(FORMAT(Driver),MyServerName,'tcp

',MyDatabase,0,FALSE,TRUE,'','');

cfront.OpenCompany(MyCompany);

IF cfront.OpenTable(TableNo,TableNo) THEN
MESSAGE(text002,cfront.RecCount(TableNo),cfront.TableName(TableNo));

cfront.CloseTable(TableNo);

MESSAGE('Table closed');

cfront.CloseCompany();

MESSAGE('Company Closed');

cfront.DisconnectServer();
MESSAGE('Disconnect')

To enter the C/FRONT functions open the C/AL Symbol Menu window and select the
method or property that you want to use. Ensure that there is a check mark in the
399

Chapter 19. Extending C/AL
Paste Arguments check box and click OK. The C/FRONT function is then pasted into
the C/AL Editor and all you have to do is adjust the parameters.

This code uses the C/FRONT functions to connect to a server and open a database that
you specify in the form. It uses the TCPIP protocol. It then opens the company that you
specify in the MyCompany field. Next it opens the table whose number you specify
and counts the number of records that the table contains. It then displays a message
telling you how many records the table contains. When you click OK in the message
window it closes the table, the company and disconnects from the server.

Note

This form only uses Windows Authentication to connect to the server. This is specified
in the 7th parameter of the ConnectServerAndOpenDatabase function. If you want to
use Database Authentication you must set this parameter to False and enter your user
ID and password in the 8th and 9th parameters respectively.

The form could look something like this when it is finished:

Handling Exceptions
As mentioned earlier (see page 366), you cannot use the exception-handling
mechanisms that are described in, for example, Inside OLE. The samples in the C/OCX
Samples show you how to handle exceptions in another easy way (but only for controls
you create yourself). The C/OCX samples are installed as part of the SDK/C/FRONT
installation.

The control has two properties, Error and ErrorCode, that are used for exception
handling. Every time a method is called, the Error property (a Boolean) is used to flag
errors; it is set to TRUE if an error occurred and FALSE if no error occurred. What
constitutes an error is defined by the methods in the control. In the control in the
C/OCX Samples one error is, for example, that an arithmetic operation caused numeric
overflow, another that an illegal (out of range) value was passed as a parameter.

When an error occurs (and Error is set to TRUE), the ErrorCode is set to a numeric code
that can be used by the caller to decide what action to take (for example to display an
appropriate message to the user).
400

19.5 Using Custom Controls from C/SIDE
Calls to methods in the control can then be wrapped like this in C/AL:

IF (Fin.Error) THEN

// do error handling, for example:

ErrorHandlerFunction(Fin.ErrorCode)
ELSE

// continue processing
401

Chapter 19. Extending C/AL
19.6 Acquiring Controls

Buy You can buy a third-party control and use it in C/SIDE, as long as the control fits within
the restrictions imposed. These restrictions are described on page 366. In short, they
are:

• Only non-visual controls are supported.
• Events are not supported.

Develop You need a suitable tool to develop a control yourself. Currently, the recommended
tools are:

• Microsoft Visual C++ 4.0, or later
• Microsoft Visual Basic 5.0

There are other tools on the market, but the tools mentioned earlier have been tested
with C/SIDE. Furthermore, they both have highly efficient wizards that make creating
controls much easier (as opposed to programming by hand on top of the "raw" API).

On the other hand, it should be said that the controls that are created with the wizards
are considerably larger than controls that you can create directly. They also require
additional runtime libraries (for example, controls created with the wizards in Microsoft
Visual C++ require the Microsoft Foundation Classes runtime library). This is a
consideration of real importance for controls that are meant to be loaded over the
Internet. This is probably less important for controls distributed as extensions to C/SIDE.

If you decide to create controls without using the wizards (in C++), you should study
the recommended books, especially Inside OLE, and the documentation that comes
with Microsoft Visual C++ very carefully before embarking on the project.
402

Part 7
Dataports

Chapter 20

Dataports

Dataports are used to export data to external text files, and
to import data from external text files.

· What Are Dataports?

· Designing Dataports

· Exporting Data

· Importing Data

Chapter 20. Dataports
20.1 What Are Dataports?

Dataports are objects that you use to import data from and export data to external text
files. There is a wide range of options for defining the format of the external file while
you are importing and exporting the object.

When you are importing data, you can control what happens if a record in the file
being imported has the same value in the key as an existing record in the database
table. In addition, at field level, you can control whether or not the OnValidate trigger
for each field should be run.

Dataports can be dynamic, meaning that when you execute the dataport it determines
whether you are importing or exporting and the name of the file to read from or write
to. This can be achieved either by defining options that the user sets in the request
form or by programming.

The following diagram shows the components of the dataport object:

The diagram shows that a dataport is composed of a number of different components.
Here is a short description of each component:

Dataport Description This is a complete description of the dataport including how
data is collected, how data is formatted when written to the output file, and so on. The
dataport description is stored in the database.

Data Item A data item corresponds to a table in the database. You define data items
so that you can retrieve information from the tables in the database.

Field A dataport field can be a field in a data item (a database table), a field in a file
from which data is to be imported, or a source expression to be executed during
import or export. Fields in the external file are defined either as having a fixed length,
or as being delimited by certain characters that you define.

Request Form A request form is a form that is run before the dataport is executed.
The request form is used to gather requests and options from the user, for example, the
name and location of the external file.

Dataports can be run without user interaction.

Dataport Description
Properties
Triggers
Data Items

Properties
Triggers
Fields

Properties
Triggers

Request Form
Properties
Triggers
Controls

Properties
Triggers
406

20.1 What Are Dataports?
NAV Application Server only supports dataports that don’t use request forms.

Property A property is an attribute of an object – dataport, data item, field, and so
forth – that characterizes the object in some way. For example, this could be the length
and position of a field in a line (when importing), or whether the OnValidate trigger of
a field should be executed (when inserting imported data into a table). Properties are
set in the Properties window of an object.

Trigger Certain predefined events that happen to a dataport cause the system to
execute a user-defined C/AL function – the event triggers the function. As you can see
in the diagram, the dataport itself, the data items, the fields, the request form and the
controls on the request form all have triggers. You can edit triggers in the C/AL editor.

Logical Design
Designing a dataport involves two distinct tasks: designing the data model and defining
the layout of the external file.

Designing the Data Model
You build the data model by designing data items. A data item corresponds to a table.

Export When you are exporting data, each data item is iterated for all the records in the
underlying table, and you can set up sorting order, keys and table views to use. You can
decide whether or not each individual record should be written to the external file.

Import When you are importing data, the records read from the external file can be inserted
into tables that correspond to the data items. You can examine the records before
inserting them and you can specify:

• whether or not the records should be inserted at all.
• whether or not the records should be inserted automatically.
• whether or not the records that are already in the database should be overwritten or

updated when a record with the same primary key is read from the external file.

External file
The layout of the external file is defined by means of a set of dataport properties. When
you are importing, these properties describe how the input stream should be broken
up into records and fields. When you are exporting, these properties describe how the
fields and records should be written to the file.

The properties that you can set vary depending on the format of the external file.
407

Chapter 20. Dataports
How a Dataport Is Run
The following flow chart is a simplified version of the full set of dataport flow charts in
Appendix C, "Dataport Flow Charts", on page 595.

1 When you start the dataport run, the OnInitDataport trigger is run. This trigger can
be used to initialize variables, but should not be used for general processing
purposes.

2 When the OnInitDataport trigger has been executed, the request form for the
dataport is run, if it is defined. You can cancel the dataport run from the request
form.
408

20.1 What Are Dataports?
3 If you choose to continue, the dataport enters a transaction (a Begin Write
Transaction (BWT) is issued) and then the OnPreDataport trigger is called. No data
has been processed at this stage.

4 The OnPreDataport trigger can be used to process the user input from the request
form.

5 When the OnPreDataport trigger has been executed, the external file is opened, and
the processing of the first data item begins.

6 When the first data item has been processed, the next data item, if there is one, is
processed in the same way.

7 When there are no more data items, the OnPostDataport trigger is called. You can
use this trigger to do any post processing that is necessary.

8 When the OnPostDataport has been processed, the external file is closed.

9 The transaction that was entered in step 3 ends with an End Write Transaction (EWT)
being issued.

The processing of each data item (steps 5 and 6) is, of course, different for importing
and exporting. For more detailed flow charts, see Appendix C. What is important to
note in the overall chart is that the entire processing of a dataport takes place within a
transaction. This means that if the processing is interrupted before the final EWT is
issued, no trace is left of the interrupted run in the database (an external file will,
however, often have been corrupted.)

Saving, Compiling and Running a Dataport
After you have designed a dataport, you must save and compile it before it can be run.
Normally, you do this when you have finished designing the dataport. However, you
may want to save a dataport that is not yet finished and therefore cannot be compiled.
You can also test-compile a dataport without closing or saving it.

Saving and Closing a Dataport
A dataport is closed when the Dataport Designer window is closed.

Note

If you enter ID and Name as dataport properties, these values will be used, and you will
not be prompted for ID and Name when you close the dataport.

To save a dataport:

1 Click File, Save and give the dataport a name and an ID.
409

Chapter 20. Dataports
The ID must be unique and follow the rules for numbering objects. For more
information about object ID numbers, contact your Microsoft Certified Business
Solutions Partner.

2 The Compiled field is set to TRUE by default (displayed as a check mark). If you
don't want to compile the dataport, click the field to remove the check mark.

3 Click OK to save the dataport.

You can save a dataport without closing it by clicking File, Save or Save As. You can use
the Save As option to make a copy of an existing dataport.

Compiling a Dataport
Dataports, like the other objects in C/SIDE, must be compiled before they can be run.
As described earlier, you can compile a dataport whenever you save it.

When you are designing a dataport, you can test-compile it to find possible errors, by
clicking Tools, Compile (F11).

Running a Dataport
In a finished application, your dataports are generally incorporated into menus, or else
they can be called, for example, from a command button on a form. However, when
you are designing dataports, you often want to run them before they have been
integrated into the application.

Test-running
dataports

When you are designing a dataport, you can test-run it by clicking File, Run (CTRL+R).
The dataport is compiled and run in its current stage of development. It is not saved,
which means that you can use this function to verify that the changes you are making
work as intended before you save them.

Note

If the dataport is for importing data, no records are actually saved in the database table
during the test-run.

Running dataports
from the Object
Designer

To run a dataport from the list of dataports in the Object Designer, select it and click
Run.
410

20.2 Designing Dataports
20.2 Designing Dataports

This section is a general description of the various elements that are involved in
designing dataports. The tables that list the properties and triggers contain a brief
description of what each property or trigger is used for. Full explanations can be found
in the C/SIDE Reference Guide online Help.

Designing a dataport consists primarily of setting various properties. The following
sections explain which properties to use, and how to use them.

Dataport Properties
This set of properties describes the dataport in general, and this is also where you
specify the format of the external file.

The Import and FileName properties can be set and reset dynamically. For example, you
can create a dataport that allows the user to decide whether to import or export, or to
select the name of the external file to read from or write to (or you can generate a
filename automatically once the dataport is run).

Property Meaning

ID The ID of the dataport – must be unique among dataports.

Name The name of the dataport.

Caption The caption shown on the request form window. For example, the default
value in English (United States) is the same as the name of the dataport.

CaptionML The list of translations of the object’s caption.

Import Whether or not the dataport imports or exports data. It can be set
dynamically in the OnPreDataport trigger. It cannot be changed after the
OnPreDataport trigger has been run.

FileName The name of the external file to write data to or read data from. This
property can be set dynamically. If you reset the file name after a file has
been opened, this file is closed and a new file is opened.

FileFormat The format of the external file: Variable or Fixed

FieldStartDelimiter When FileFormat is Variable, this property is used to define the string that
marks the beginning of a field on input or output.

FieldEndDelimiter When FileFormat is Variable, this property is used to define the string that
marks the end of a field on input or output.

FieldSeparator When FileFormat is Variable, this property is used to define the string that
separates fields on input or output.

RecordSeparator The string that separates records on input or output.

DataItemSeparator The string that separates data items on input or output.

UseReqForm Whether or not the request form should be run before the dataport is run.

ShowStatus Whether a status window will be shown while the dataport is running. This
window also has a Cancel button that you can use to interrupt the dataport
run – otherwise this is only possible if you create a dialog yourself.
411

Chapter 20. Dataports
The FieldStartDelimiter and the FieldEndDelimiter properties are used to place the
contents of a field in quotation marks in situations where the data in the field contains
the character that is defined as a separator (FieldSeparator, RecordSeparator or
DataItemSeparator). These delimiters are not obligatory. This means that if only one
field of a record needs to be placed in quotation marks, only this field has to be
enclosed by the FieldStartDelimiter and FieldEndDelimiter characters. The other fields
can optionally have the delimiters; it makes no difference when you are importing.
When you are exporting, all the fields are written to the external file with all the
delimiters and separators.

File Format
The FileFormat property determines the format of the external file and defines how a
record is read from or written to the file. The RecordSeparator property defines how the
file is broken up into records, and the FileFormat property then defines how to break
each record up into fields. Finally, the DataItemSeparator property defines how data
items should be separated if the dataport has more than one data item. Note that data
items cannot be nested, although a dataport can have several data items that are
processed sequentially.

Note

The file format you set for a dataport determines which properties are available for that
dataport. For example, if you set the file format to Variable, the FieldEndDelimiter,
FieldStartDelimiter and FieldSeparator properties become active.

FileFormat: Fixed When the format of the external file is Fixed, the fields in a record have a fixed width.
You can define the starting position and the width of each field in the record (if the
record separator is a newline character, you can think of a record as a line of text). The
positions and widths of the fields are properties of the fields and are described on page
414.

FileFormat: Variable When the format of the external file is Variable, the fields in a record are delimited by
characters that you define, and the fields can have varying widths. The fields are
separated by the string defined as the FieldSeparator property.

Data Item Properties
This set of properties describes the data items of the dataport. A data item is a table in
the dataport.

TransactionType There are four basic transaction type options: Browse, Snapshot,
UpdateNoLocks and Update. Each transaction type defines the behavior of
a transaction in Dynamics NAV and takes effect from the beginning of a
transaction.

Permissions The permissions of the dataport to access database objects. (The dataport
can have wider permissions than the individual user. This means that the
user might be able to use dataports that retrieve information from tables
that the user cannot normally access.)
412

20.2 Designing Dataports
Most of these properties are the same and have the same function as the
corresponding properties of a data item in a report (see Chapter 11, page 219).
Dataports have three special properties: AutoSave, AutoUpdate and AutoReplace.

AutoUpdate, AutoReplace, AutoSave
The three Auto properties determine how the records that are read from the external
file are handled. These properties are also used to resolve the conflict that arises when
you import a record from an external file and it has the same primary key as a record
that already exists in the database table.

AutoSave and AutoReplace are used to define how records are saved in the database
table. Note that if AutoSave is No, the settings of AutoReplace and AutoUpdate have
no effect. In this case, you have to handle any conflicts from your C/AL code. The

Property Meaning

DataItemIndent How much the data item is indented. Can be set in the designer when
creating data items.

DataItemTable The table that the data item is based on. Can be set in the designer when
creating data items.

DataItemVarName The name of the data item as a variable. The default value is the value of
DataItemTable.

DataItemTableView The key, sort order and filters to apply.

ReqFilterHeading The name of this tab on the request form. The default value is the name
of DataItemTable.

ReqFilterHeadingML The translations of ReqFilterHeading.

ReqFilterFields The names of the fields that initially will be included in the ReqFilter form.

CalcFields The names of the fields that will be calculated after a record has been
retrieved.

DataItemLinkReference The DataItemVarName of a less-indented data item that this data item
will be linked to.

DataItemLink The link between the current data item and the data item specified by
DataItemLinkReference.

AutoSave Whether or not the imported records are automatically inserted into a
C/SIDE table.

AutoUpdate Whether or not the imported records are initialized with values from an
existing record with the same primary key.

AutoReplace Whether or not imported records will automatically replace existing
records with the same primary key.
413

Chapter 20. Dataports
following table outlines the effects of various combinations of settings of these
properties:

--- MEANS THAT THE SETTING DOES NOT MATTER.
* IF AUTOSAVE IS NO, IT IS POSSIBLE TO INSERT AND MODIFY RECORDS BY USING INSERT OR MODIFY FROM C/AL.

AutoUpdate is useful in some particular situations. Its functionality is best explained
with a brief example.

Example

Suppose you have a table that is an item list. You update the prices by exporting a list with item
numbers (the primary key) and prices to an external file and then you do some calculations on the
prices in a spreadsheet. Now, when the prices are calculated and you are ready to import the file
with the new prices, it is obvious that the records read from the external file will have the same
primary key as the records that already exist in the database. Using AutoSave and AutoReplace will
not solve the problem. If you are replacing every record with the corresponding record from the
import file, all the information except the item numbers and the prices will be lost (it is assumed that
the table contains more information than just the item numbers and the prices, for example the
names of the items, the stock level, and so forth).

AutoUpdate solves this dilemma. When a record is imported, it actually replaces the existing record,
but any fields that are not present in the imported record are initialized with the data from the
existing record instead of being left empty. The end result is that the existing record is updated with
the information that was revised.

Field Properties
This set of properties describes the fields of a record. If FileFormat is Fixed, you use the
StartPos and Width properties of each field to define how a record that is read from the
external file is broken into fields. When you are exporting, these properties determine
how data from the database is written to the external file.

Auto
Save

Auto
Update

Auto
Replace

Record exists in database
and in import file

Record exists only in import file

No* --- --- The record in the database is
not automatically updated or
replaced

The imported record is not
automatically inserted in the
database

Yes No No A runtime error occurs, and
the import is terminated

The imported record is automatically
inserted in the database

Yes No Yes The imported record replaces
the existing record

The imported record is automatically
inserted in the database

Yes Yes --- The imported record updates
the existing record

The imported record is automatically
inserted in the database

Property Meaning

Enabled Whether or not the field is enabled or disabled. A field that is disabled is
imported from the external file, but will not be inserted into the record.
414

20.2 Designing Dataports
When fields are exported, the data they contain is converted to text before being
exported. If the format is Fixed and the width is smaller than the actual width of the
data after conversion, the contents are truncated from the right until it has the defined
width. That is, a number is not rounded or truncated as a number, but as text, from the
right.

You get a warning at design-time if you have defined fields with starting positions and
widths that could cause these fields to overlap. The error makes it impossible to
compile (and subsequently execute) the dataport.

During importation, a value that is too large for the data type or defined width of the
database table field where it is to be inserted causes an error and execution stops. As
the whole dataport is within a transaction, no traces will be left of the aborted run in
the database.

Dataport Triggers
The following is a list of all the triggers that are executed when a dataport is run. These
descriptions are only an overview. The C/SIDE Reference Guide online Help contains the
full and most recent descriptions.

SourceExpr The source expression of the field. When you are importing, this could be
the name of the database table field where the value that is read from the
external file should be stored, but it can be any valid C/AL variable. When
you are exporting, this could be the value that is exported to the external file
– for example the name of a database table field, but it can be any valid
C/AL expression.

Caption The caption in the currently selected language. The value is taken from the
CaptionML property if this property is set. For example, the default value in
English (United States) is the same as the name of the field.

CaptionML The list of all the translations of the field’s caption.

StartPos The starting position of this field if FileFormat is Fixed. Positions are
numbered from 1 upwards.

Width If FileFormat is Fixed, this field contains the width of the field.

CallFieldValidate Whether or not the OnValidate trigger is executed when the field is
imported.

Format How the field is formatted during exportation. For example, you can
determine the number of decimal places, and so forth.

AutoCalcField The system automatically calculates this FlowField.

Property Meaning

Dataport Trigger Executed

OnInitDataport When the dataport is loaded, and before the request form is run and
table views and filters are set.

OnPreDataport Before the dataport is run – but after the request form has been run.
Table views and filters are set when this trigger is run.

OnPostDataport After all the data items have been processed.
415

Chapter 20. Dataports
OnPreDataItem Before the data item is processed – but after the associated variable
has been initialized and the table views and filters set.

OnBeforeExportRecord When a record has been retrieved and is ready for export.

OnAfterExportRecord After a record has been exported to the external file. You can use this
trigger, for example, to do some processing on the external file
before the next record is exported, such as moving the file pointer.

OnBeforeImportRecord Before a record is imported from the external file. You can use this
trigger, for example, to do some processing on the external file
before importing the next record, such as moving the file pointer.

OnAfterImportRecord After a record has been imported from the external file, but before it
is inserted in the table. You can use this trigger, for example, to
process the record before inserting it or to examine it in order to
decide whether to insert it at all.

OnPostDataItem When the data item has been iterated for the last time.

OnAfterFormatField After the value of a field has been formatted, but before the text is
written to the external file. This trigger gives you access to the
formatted value in its text format.

OnBeforeEvaluateField After a field has been read from the external file, but before the
value has been evaluated and validated. This trigger gives you access
to the imported field in text format.

Dataport Trigger Executed
416

20.3 Exporting Data
20.3 Exporting Data

This section describes how to create dataports and walks you through the steps
involved in creating the four fundamental types of dataports: importing and exporting,
each with a fixed and a variable format of the external file. The last example tells you
how to create a dataport that both exports and imports, and updates records in the
database when importing.

Exporting - Fixed Format
This dataport exports records in a fixed format to a file. The records in the file are
separated by new lines, and within each record or line, a field has the same width in all
the records, no matter how wide the actual data of the field is.

In this example, you use the G/L Account table (the Chart of Accounts). There are
several FlowFields among the fields that are exported and these have to be calculated
during the exportation.

Simple Version
The first version is very basic. You will refine it in the next subsection.

To create a dataport:

1 Click Tools, Object Designer (SHIFT+F12).

2 In the Object Designer, click Dataport, New and the Dataport Designer window
appears:

3 In the first DataItem field, click the AssistButton p and select the G/L Account table
from the Table List window that appears.

The name is set by default to the name of the table. You do not have to change it in
this dataport.
417

Chapter 20. Dataports
4 Click an empty line in the Dataport Designer to select the dataport itself and click
View, Properties (SHIFT+F4) to open the Properties window of the dataport (not for
the data item). You can also select the dataport by clicking Edit, Select Object.

5 In the Properties window, leave the default settings except for:

Import – set it to No to create a dataport that exports data.

FileFormat – set it to Fixed.

You have just created a dataport with a single data item and must now specify which
fields from the underlying table will be used in the dataport.

Adding dataport
fields

6 In the Dataport Designer, select the G/L Account data item.

7 Click View, Dataport Fields and the Field Designer window appears.

8 When the Field Designer is open, click View, Field Menu.

9 In the Field Menu window, select the fields that you want to export. For this
dataport, select the No., Name, Balance at Date and Net Change fields.
418

20.3 Exporting Data
10Click the Field Designer. You are asked if you want to append the selected fields.
Click Yes.

11Select the G/L Account data item and open the Properties window (SHIFT+F4).

12In the Value field of the CalcFields property, click the AssistButton k to open the
Field List window.

13In the Field List window, select the fields from the data item that must be calculated
when they are exported, that is, the FlowFields. In this example, select the Balance
at Date and Net Change fields and click OK.

Now, you are ready to run the dataport. Click File, Run to run it before saving it. If you
want to save the dataport first, you will be prompted to give it a name and a number.

StartPos and Width
properties

After you have inserted the fields from the Field Menu, you can check the settings of
the StartPos and Width properties of all the fields in the Field Designer.
419

Chapter 20. Dataports
Click View, Dataport Fields to open the Field Designer window:

As you can see, both StartPos and Width have been filled in for you. They are assigned
values according to these rules:

Running the
dataport

When you run the dataport, you see the default request form. The first tab is of little
interest, but the second tab, Options, is important because it is here that you enter the
name of the external file to write to.

When you have entered the name of the file, click OK to run the dataport.

Data type of field Width assigned

Code If actual length > 10, actual length is used, otherwise 10

Text If actual length > 30, actual length is used, otherwise 30

Date 11

Time 10

Option 10

Decimal 12

Integer 7

Boolean 10
420

20.3 Exporting Data
When the dataport run is finished, you can open the file in a text editor:

Refined Version
This simple dataport could be more user-friendly. Depending on what the dataport is
to be used for, several things could be changed. Here are some examples of what you
can do:

• The first tab in the request form should not be shown because you do not want the
user to set filters and keys.

• Only accounts where the Account Type is Posting or End-Total should be exported.
• The numbers must be formatted as thousands. There must be no thousand

separators, no decimals, and the sign should be prefixed.

Changing the
request form

You must never set the UseReqForm property to No to remove the request form. If you
do, you will make it impossible for the user to enter the name of the file to write the
data to. In fact, running the dataport will cause a runtime error because no filename
has been set.

Instead, you can keep the Options tab and remove the data item tab by setting the
DataItemTableView property of the data item. When this property is set, as opposed to
being left undefined, the user cannot change key or sort order and cannot set a table
filter, and the corresponding tab will be removed by the system.

To set the DataItemTableView property of the data item:

1 In the Dataport Designer, select the G/L Account data item and open the Properties
window (SHIFT+F4).

2 In the DataItemTableView property, click the AssistButton k to open the Table View
window:
421

Chapter 20. Dataports
3 Fill in at least one of the fields. In this example, the Key field has been set to No. and
the Order field has been set to Ascending.

Selecting specific
account types

To select only some account types, you must set a table filter. You can do this in the
DataItemTableView property.

4 In the Table Filter field, click the AssistButton k to open the Table Filter window:

5 Set the values of the Field, Type and Value fields as shown in this picture. This
creates a table filter that selects records where the Account Type is either Posting or
End-Total (the character between the two values is a | (pipe) and means OR.)

6 Click OK to close the Table Filter and Table View windows.

Changing the
formatting of
numbers

To export the decimal fields, Balance at Date and Net Change as thousands (so that
the number 1.444.723,67 is exported as 1444), you have to use the SourceExpr property
of these fields:

To change the formatting of number fields:

1 Select the G/L Account data item and click View, Dataport Fields to open the Field
Designer.

2 In the Field Designer window, select the Balance at Date field and then click View,
Properties (SHIFT+F4).

3 Enter the following expression as the SourceExpr property of this field:

FORMAT(ROUND("Balance at Date"/1000,1,'='),0,1)

This C/AL statement ensures that the value of the Balance at Date field is divided
by 1000. The result is rounded by the ROUND function, and then the FORMAT function
is used to render the value returned by the ROUND in format 1 (which for a decimal
value means <Sign><Integer><Decimals>).

4 Enter this expression as the SourceExpr of the Net Change field:

FORMAT(ROUND("Net Change"/1000,1,'='),0,1)
422

20.3 Exporting Data
The file that is created by this dataport looks like this when it is imported into a
spreadsheet:

Exporting - Variable Format
This sample dataport exports the same records as the previous example, but in a
variable format. Each field in a record will be delimited by characters that you define
and will only have the width of the actual data of the field in each of the records.

Very few changes are required to create this dataport instead of the dataport with fixed
width format. You must specify the right set of options for the data item, as follows:

• Set the FileFormat property to Variable.
• Set the FieldSeparator property to ; (semicolon).
• Set both the FieldStartDelimiter and the FieldEndDelimiter properties to <None>.
• Let the RecordSeparator and the DataItemSeparator properties keep their default

settings, which means that records will be separated by new lines, and data items by
two new lines (which is not of real interest here, because you have only one data
item in this dataport.)
423

Chapter 20. Dataports
The exported file could look as follows in a text editor:

The semicolon was used as FieldSeparator because the fields include both space
characters and commas. Another solution would have been to use the delimiters. In
that case, the FieldSeparator could also have been a comma, but what you choose
should really depend upon the target application for the exported file, and upon the
formats that the application supports when it imports text files.
424

20.4 Importing Data
20.4 Importing Data

This section describes how to create dataports for importing data using each of the two
formats for the external file: fixed and variable format. The last example tells you how
to create a dataport that both exports and imports, and updates records in the
database when importing.

Importing - Fixed Format
Creating a dataport that imports data is not very different from creating one that
exports data. However, you must consider how the imported records are going to be
inserted in the database table that the data item is based on. This is especially relevant
if the table already contains records that have the same primary key as some of the
records that are going to be imported.

This first example assumes that the table is empty (or that other actions have been
taken to ensure that no conflicts will occur). A later example will show you how to deal
with any conflicts that might occur.

The file that you are going to import records from looks like this:

Setting up the table In this example, you will import the records into a newly created table. The table should
have the following layout:

This means that you must decide how the lines in the file you are importing – each line
will become a record in the data item – will be divided into fields. The lines have a fixed
425

Chapter 20. Dataports
format, and by carefully looking at the layout of the lines, the field starting positions
can be deduced:
:

This tells us that the fields must have the following properties:

Once you have established how the lines in the import file are organized, creating the
dataport is straightforward:

1 Open the Object Designer and click Dataport, New to create a dataport.

2 Open the Properties window of the dataport and set the Import property to Yes and
the FileFormat property to Fixed.

3 In this example, you must create a data item based on the table that you just
designed.

4 Click View, Dataport Fields to open the Field Designer and add all the fields from the
table to the dataport.

5 You must change the setting of the StartPos and Width properties to values that are
appropriate for the actual file you are going to import data from.

Field StartPos Width

No. 1 3

Name 4 11

Price 15 6

First field Second field Third field

426

20.4 Importing Data
In this example, the values should be set as follows:

6 You can now run the dataport. Remember that if you run the dataport from inside
the Dataport Designer (by clicking File, Run), the records will not be stored in the
database (to have them stored, you must run the dataport from the Object Designer,
or call it from a menu.) You may also want to remove the unnecessary tabs from the
request form (see the description on page 421).

After running the dataport so that the records are actually imported into the database,
the table will look like this:

Note that because Field No. is the primary key of the table, the order in which the
records are displayed is determined by the primary key, which, incidentally, is not the
same order as they appeared in the original import file.

Possible errors It is easy to make errors when deciding how to "cut up" the lines in the file you are
importing. In some cases, this will result in a runtime error when the dataport is run. For
example, if you made an error in setting up the Field No. field and assigned it a width
that is one character too wide. For most of the import file, this would make no
difference at all; the resulting trailing space would be ignored. But the line beginning
with "112Oven..." would provoke a runtime error when C/SIDE read 112O instead of
112. The "O" (upper case "o") cannot be inserted into an integer field.

You might consider it fortunate that the error actually provoked a runtime error. In
other cases, the error might not have been detected by C/SIDE, for example, if the "cut"
between two text fields was placed incorrectly. If you have the opportunity, test your
imports carefully before using them for production.
427

Chapter 20. Dataports
Hint

In some cases, the fields have a different order in your table that they do in the file you
are importing. If this is the case, you can add the fields manually and ensure that the
design of the data item reflects the order that you need. You will have to set the
StartPos and Width manually.

Importing - Variable Format
It is not very difficult to change this dataport so that it can import an external file in
variable format. Let us suppose that the file looks like this:

The data in this file is the same as in the file with fixed format that you imported earlier,
but here the fields are separated by commas.

To change the dataport so that it can import an external file in variable format, you
must alter some of the settings in the Properties window of the dataport.

You must make the following changes:

1 Set the FileFormat property to Variable.

2 Set the FieldSeparator property to a comma.

3 Set the delimiters to <None>.

The properties of the dataport should then look like this:
428

20.4 Importing Data
These are the only differences between the fixed format dataport and variable format
dataport. Remember to save and compile the dataport. When you run the dataport the
result is the same as running the dataport with a fixed format.

Hint If the order of the fields in the import file is different from the order of the fields in the
data item, you cannot use the same method to move the fields around as you would if
the file had a fixed format. Instead, you can change the order of the fields in the Field
Designer.

If the import file has the following format:

If the table has the following layout (the same as before):

In this case, you can add or arrange the fields in the Field Designer in the same order as
they have in the import file:

Because the fields have been added one-by-one from the Field Menu (instead of all-at-
once), the values in the StartPos and Width fields have not been calculated by the
429

Chapter 20. Dataports
designer. However, this does not matter because these properties are not used in a
dataport with a variable format.

Importing or Exporting: A Dynamic Dataport
This final example is slightly more advanced than the previous ones. You will create a
dataport than can be used to update prices in the Item table in an external program –
you will use Microsoft Excel.

The dataport works as follows:

1 In the request form that opens when you run the dataport, you can select whether
to import or export, and you can set a filename.

2 When you are exporting, only the records for the items where the Gen. Prod.
Posting Group is RETAIL are exported.

3 Furthermore, only the records that have a value in the No. field between 1000 and
2000 are exported.

4 Only three fields are exported from the table – No., Description and Unit Price.

5 The Description field (text) that corresponds to the Tariff No. field is retrieved
from the Tariff Number table for each record in the Item data item. The text in the
Description field is written as a fourth field when each record is exported.

6 The user is supposed to change the Unit Price field in the external program – or at
least be able to do so. This means that the information in this field can be different in
the external file than it is in the database. You therefore want the Unit Price fields
from the external file to replace the values in the database when you import the file
again. That is, you want the records in the database to be updated when you import
the file.

Note

One of the reasons for filtering on the No. field is to exclude records that contain a
comma in the Description field. Excluding these fields makes managing this example
easier in Excel.

Creating the Export Part
You start by creating the export part of the dataport. The first task is to determine the
format that the external file should have. You are going to edit the file in Excel, so you
should select a format that suits Excel. A semicolon-delimited format appears to be the
best choice.

With this in mind, create the dataport:

1 Open the Object Designer and click Dataport, New to create a new dataport.

2 Open the Properties window (SHIFT+F4) of the dataport and set the properties of
the dataport as follows:

Property Value

FileFormat Variable – the default value
430

20.4 Importing Data
Leave the other properties at their default settings.

3 Create a data item based on the Item table.

4 Open the Properties window of the Item data item.

5 In the Value field of the DataItemTableView property, click the AssistButton k to
open the Table View window.

6 In the Key field, click the AssistButton p and select the No. field in the Key List
window.

Do not use the Table Filter field to set a filter even if you are only going to select a
subset of the records in the Item table. The reason for not setting the filter here will
become clear later.

7 Click View, C/AL Globals to open the C/AL Globals window and create a global
variable called Tariff Number of data type Record, with the Tariff Number table as
the subtype:

FieldStartDelimiter " (quote) – the default value

FieldEndDelimiter " (quote) – the default value

FieldSeparator ; (semicolon)

Property Value
431

Chapter 20. Dataports
8 Select the Item data item and click View, Dataport Fields to open the Field Designer
window.

9 Set up the dataport fields as follows:

Use the AssistButton p in the SourceExpr field to select the fields from the Item
table.

However, you must enter the name of the field from the Tariff Number table
manually. Remember to use the format shown in the picture.

To calculate the StartPos and Width of each field, open the tables in the Object
Designer and look up the length of each field. The first field must always start at
position 1 and not at 0.

The Unit Price field is of data type Decimal and its length must therefore be 12. For
more information about the size of the various data types, see the section "Choosing
Data Types" on page 63.

10To set the filter that will select the records between No. 1000 and 2000 where the
Gen. Prod. Posting Group is RETAIL, open the C/AL editor, and enter the following
code in the OnPreDataItem trigger of the Item data item:

IF NOT CurrDataport.IMPORT THEN
__Item.SETRANGE("Gen. Prod. Posting Group",’RETAIL');
__Item.SETRANGE("No.",’1000',’2000’);

About filters The filter is set only if the dataport is used to export (remember that the user can
decide whether to import or export at runtime). The reason for using this
construction instead of setting a table filter in the DataItemTableView property is
that if you are placing the filter on a field that is not being exported with the other
data. If you had used TableFilter the filter would always be set – also when the
dataport is used to import data. However, because the Gen. Prod. Posting Group
field is not in the file that you import, no records will be imported. If the field that
you use for filtering is exported and imported, you could of course have used the
TableFilter field in the Table View window to set the filter.

11To retrieve the text from the Tariff Number table and to export it, enter the
following code in the OnBeforeExportRecord trigger of the data item:

IF "Tariff No." <> '' THEN
BEGIN
__"Tariff Number"."No." := "Tariff No.";
432

20.4 Importing Data
__"Tariff Number".FIND;
END
ELSE
__"Tariff Number".Description := 'NO TARIFF NUMBER';

This is enough to create the part of the dataport that exports the records.

12Save and compile the dataport.

When you run the dataport, a request form appears and you can fill it out as follows:

When you click OK, the dataport is run and the records that match the criteria you have
set up are written to a file called prices.csv.

When you open this file in Excel, it could look like this:

Now you should change the prices of some of the items and save the spreadsheet as
newprices.csv. This is the file that you will import in the next section.
433

Chapter 20. Dataports
Creating the Import Part
Now, you will create the part of the dataport that can import the new prices. This part
is very easy to create. When you run the dataport, you decide whether it should export
or import, and you select the file that it should write to or read from.

To specify that the imported records must update the existing records with the new
prices:

1 Open the dataport in the Dataport Designer and open the Properties window of
the data item.

2 Set the AutoSave property of the data item to Yes.

3 Set the AutoUpdate property of the data item to Yes.

The net effect of these settings is to update the existing records with the data that is
different in the imported records, in this case, the Unit Price.

Before the dataport is used to import the converted data, the records could look like
this:

The Unit Price field has been repositioned so that it is included in the screen shot.

To import the new data, run the dataport and fill out the request form as follows:

Use the AssistButton k to browse to the newprices.csv file. Remember that the
records are not actually imported if you run the dataport from inside the Dataport
Designer. You must run it from, for example, the Object Designer.
434

20.4 Importing Data
After the records have been imported, the records in the Item table could look like this:

Notice that the prices of the top six items have been changed.

Further Work
This dataport has some shortcomings. For example, the price of each unit is used to
calculate the Profit % field in the Item table when the Unit Price field is validated.
You have not used the CallFieldValidate property to enforce that evaluation, but have
left it at the default setting of No.

Getting the validation to work as intended is not so easy, because the code that is
triggered uses values from other fields that are not part of this dataport. At the time of
the validation, these fields do not contain any values because they are updated later.
One way to solve this problem would be to export all the fields but this would make it
much harder to manage in Excel.

This problem shows that you must give careful consideration to all the interdependent
data when you update a table from a dataport. The solution to the problem will,
however, be different for each table and for each set of fields that are imported.
435

Chapter 20. Dataports
436

Part 8
XMLports

Chapter 21

XMLports

XMLports are conceptually related to dataports as they are
object types that can import and export data. The difference
is that the data is encapsulated in XML format. This makes it
possible to exchange information between different
computing systems in a streamlined way.

· XMLport Fundamentals

· Designing XMLports

· XMLport Examples

· Validating Data

· XMLports and Business Notifications

Chapter 21. XMLports
21.1 XMLport Fundamentals

XMLports enable you to import data received in XML format to the Dynamics NAV
database and export data in XML format from the Dynamics NAV database. You only
need a basic knowledge of XML to design and work with XMLports.

You design XMLports in the XMLport Designer, which you open from the Object
Designer.

Saving, Compiling and Running an XMLport
When you have designed an XMLport, you must save and compile it before you can
use it. Normally, you do this when you have finished designing the XMLport. However,
you may want to save an XMLport that is not yet finished and therefore cannot be
compiled. You can also test-compile an XMLport without closing or saving it.

Saving and Closing an XMLport
When you close the XMLport Designer, you close the XMLport.

To save an XMLport:

1 When you close an XMLport, C/SIDE will ask whether or not you want to save your
changes. If it is a new XMLport (an XMLport that has not been saved before), and
you choose to save, you will have to assign an ID and a name to the object. The ID
must be unique and must follow the rules for numbering objects. Your Microsoft
Business Solutions Partner will provide you with this information.

Hint: If you set up the ID and Name XMLport properties, their values will
automatically be used, and you will therefore not be prompted for ID and Name
information when you close the XMLport.

2 The option field Compile is by default set to True (displayed as a check mark). If the
XMLport that you have designed is not yet ready to be compiled, remove the check
mark by clicking the field.

3 Click OK to save the XMLport.

You can save an XMLport without closing it by choosing Save or Save As from the File
menu. By using Save As, you can rename an existing XMLport. Note that you can copy
an XMLport by opening and saving it with a new name.
440

21.1 XMLport Fundamentals
Compiling an XMLport
XMLports, like other objects in C/SIDE, must be compiled before they can be run. As
described previously, you can choose to compile an XMLport whenever you save it.

While you are designing an XMLport, you may want to test-compile it to find possible
errors. You can test-compile an XMLport during design by choosing the Compile
option in the Tools menu.

Running an XMLport
XMLports are called from codeunits. While you are designing an XMLport, you will
often want to run it before it has been integrated into an application to check that it
functions as you intended. To do so, you can create a test-run codeunit that calls the
XMLport and either streams data to or from a file depending on whether you are
importing or exporting data. Here is an example of a test-run codeunit that calls an
XMLport to import data from an XML file:

The four functions in the OnRun section perform the following:

• Open the Import.xml file.
• Create an InStream object so that the XML data can be streamed from the file.
• Load a specific XMLport object and give it the source from which it shall read and

parse the incoming XML data stream.

• Close the Import.xml file.

For more information about streaming data to and from files or from automation
components, see the C/SIDE Reference Guide online Help and the Development Guide
for Communication Components online Help. The latter is available on the Dynamics
NAV product DVD and is installed as part of the NAV Application Server.
441

Chapter 21. XMLports
21.2 Designing XMLports

An XML document contains XML tags, which identify the nature of the content that
they contain. To create an XMLport to import the data in an XML document, you
specify all the XML tag names and indicate the type of each, that is, whether it
represents an element or an attribute. You then map these tag names to corresponding
data structures (tables, records or fields) in the Dynamics NAV database. At runtime,
when an XMLport object is called to handle an incoming XML document, it will read
the incoming data stream and perform the processing and database actions.

When you want to create an XMLport to export data from the Dynamics NAV database
in XML format, the XMLport Designer enables you to build the tag structure of the XML
document and map the data. At runtime, the XMLport object will read the required
data from the database, add the necessary XML tags to form the XML document and
write the document to a data stream.

XMLports do not handle XML documents that:

• modify existing data in the database.
• find and delete data in the database.
• query the database for data (item catalog information, for example).

If you need to work with an incoming document of one of these types, you can do so
using C/AL code and by carrying out the database manipulation necessary to achieve
the desired result.

The XMLport Designer
The XMLport Designer contains four column fields: TagName, TagType, SourceType
and DataSource. The type of information that you enter in these column fields is:

TagName
In a TagName field, you enter the XML tag name of the XML element or attribute. You
must enter tag names in the order in which they appear in the XML document. Parent
elements must precede their child elements. You indent the tag names of child
elements under their parent elements using one indentation per level. You list
attributes under the elements that they define and you indent them to the child level.
442

21.2 Designing XMLports
TagType
You use this field to specify whether the name in the TagName field represents data of
the type element or attribute. The drop-down list in a TagType field contains two
options: Element and Attribute. The default setting is Element.

SourceType
You use this field to specify the data structure that the tag name corresponds to in the
Dynamics NAV database. The SourceType field contains a drop-down list containing
three options: Text, Table and Field. The default setting is Text.

Text: This is the option you select when the XML data cannot be mapped directly to
the database or when the database does not need the information. The value of the
Text field will be put into a text variable with the name you have specified in the
VariableName property (otherwise the tag name will be used by default). The text
variable acts like a normal global C/AL text variable. You can also turn the text source
type into a big text variable by setting the TextType property to BigText.

Table: You select this option to indicate that the tag name is equivalent to a table or
that a table record must be initialized. As with the Text option, you can specify a
variable name for the table, which also acts like a global record variable. By default, the
variable name is the name of the table.

Field: You select this option to indicate that the tag name is equivalent to a field in
the database. However, for this selection to be valid, you must first have declared a
table as the parent of the field. Failure to do so will cause an error to occur when you
try to compile the XMLport object.

A DataSource field has the following interactions with the SourceType field:

• If you have specified Table as the source type, clicking the AssistButton in the
DataSource field will open the Table List window. You can also select a table by
setting the SourceTable property. If you have defined a variable name for the table
to be used, the format of the value shown in the DataSource field will be
tablevariablename(tablename). If you have not defined a variable name, the
format of the value will be shown as <tablename>(tablename).

• If you have specified Field as the source type, clicking the AssistButton in the
DataSource field opens the Field Lookup window. Here you can select a field from
one of the tables you have specified in the XMLport. The format of the value is
shown as tablevariablename::fieldname.
443

Chapter 21. XMLports
In the following Field Lookup window, fields can be selected from the Sales Header
and Sales Line tables:

• If you have specified Text as the source type, the text’s variable name (or tag name if
you have not specified a variable name) will be shown in the DataSource field.

XMLport Properties, Functions and Triggers
There are a set of properties, functions and triggers that you can use to manipulate an
XMLport. There are properties, functions and triggers for the object level, and for the
element level, which consists of Field, Table and Text. The properties that are available
at the element level depend on the selections you make in the TagType and
SourceType fields in the XMLport Designer. See the online C/SIDE Reference Guide for
descriptions of all the properties, functions and triggers for XMLports.
444

21.3 XMLport Examples
21.3 XMLport Examples

This section contains five examples of how you can use an XMLport to import data
from an XML document into the Dynamics NAV database.

Example 1

In this example you design an XMLport to import data from an XML sales order document, XML
Sales Order.xml, to the Dynamics NAV database. The sales order is shown here:

After analyzing the XML document, you can see that the data belongs in two database tables; XML
Header - Import and XML Items - Import. We therefore design an XMLport that can insert the
data into these tables.
445

Chapter 21. XMLports
The XMLport has the following design:

The design of the XMLport shows that the data in the XML document has been mapped to database
tables which have a header-line relation. The XMLport must insert the header information before
inserting the line information. We have therefore set the LinkedTableForcedInsert property to Yes
for the <Item> tag to ensure that this happens. The LinkTable and LinkFields properties for this tag
have also been set to indicate the relationship between the XML Header - Import and XML Items
- Import tables. It is important to specify this binding information to ensure that the XMLport
enters the data into the correct tables. Note that you have given the XML Items - Import table the
variable name "L" and that the XML Header - Import table has the variable name "H". The
Property window for the <Item> tag looks as follows:
446

21.3 XMLport Examples
After all the records have been inserted into the XML Items - Import table, the Contact Person
and Payment Terms fields in the XML Header - Import table have to be updated. We do this
using the following C/AL code:

Example 2

The following example shows how to handle a situation in which an XML document contains
multiple data values that are represented by only one data structure in the Dynamics NAV database.

We have an XML Sales Lines table in the database that contains one field of the data type
DateTime: the Shipment field. However, the XML sales order document from which you want to
import data into the table contains two tags for this data, <ShipDate> and <ShipTime>, as shown in
the following:

One solution to the problem is to cache the values in the <ShipDate> and <ShipTime> tags, format
the two values into a DateTime value, and assign the formatted value to the Shipment field in the
447

Chapter 21. XMLports
XML Sales Lines table. In the XMLport Designer, you would define the <ShipDate> and
<ShipTime> tags as being of the Text source type:

In the OnAfterAssignVariable trigger for the <ShipTime> tag, you would write code that both
formats the two text variables into one DateTime variable, and assigns the value held by that
variable to the Shipment field of the XML Sales Lines table.

Example 3

In a business document, there is normally no need to state the same information more than once. In
a relational database, however, certain information has to be repeated in various tables for data
linking purposes. In the following XML sales order document, the <Items> tag has the attribute
Type="Order":

The problem here is that the Type="Order" information has to be written to the Document Type
field of the relevant table, in this example, the XML Sales Lines table. To cache the "Order" value,
you would declare the Type attribute as a Text source type.

TagName TagType SourceType DataSource

ShipDate Element Text <ShipDate>

ShipTime Element Text <ShipTime>

TagName TagType SourceType DataSource

Type Attribute Text Type
448

21.3 XMLport Examples
To assign the Type value to each record in the XML Items - Import table, you could write the
following code in the Import::OnAfterInitRecord trigger for the <Item> tag:

Example 4

Sometimes an incoming XML document may not contain sufficient information to allow you to
insert certain data as a record. To solve the problem, you can preassign the values of the fields for
which you do not have data. You do so in the Import::OnAfterInitRecord and
Import::OnBeforeInsertRecord triggers.

If, for example, you receive an XML sales order document that does not contain Line No.
information, you can assign a value for it in the following way:

Example 5

An XML document can be described as having a tree structure with many levels. A database table,
however, can only store data in a flat structure — at the field level. A situation can therefore arise
where an incoming XML document contains data in different scopes, whereas the data belongs in
the same scope in the database.

For example, the <BillTo> tag of an XML sales order document could contain a <PaymentTerms>
child element. The value of the <PaymentTerms> tag might sometimes need to be assigned to all
sales items, and sometimes to only one of them. If you declare the <PaymentTerms> tag as being of
the Element tag type and of the Text source type, the XMLport can keep the value alive and
therefore when it starts to process the sales item information, you can specify which record(s) the
value is to be assigned to.
449

Chapter 21. XMLports
21.4 Validating Data

Data validation is essential to ensure the integrity of information used by the
application. When an XMLport writes data to the Dynamics NAV database, it is
therefore important that corrupt data is not inserted. To help prevent this, the default
setting for the DefaultFieldsValidation property for an XMLport object is Yes. However,
the insertion of data follows the order in which you have listed the XML tag names in
the XMLport, not the validation order of the respective table. Therefore, if the insertion
order violates the table’s validation order, it is your responsibility to ensure that the
data is not written directly to the table, or that you change the order of the XML tag
names.

To avoid writing data directly to a table, you can apply a stylesheet to the XML
document to ensure that the XML tag names are transferred in the correct order.
Alternatively, you could design an XMLport that writes the data to a temporary table.
You could then write code that inserts the data into the relevant table using the correct
order. For example, an XML sales order document might contain a <DocumentNo> tag
as shown in the following:

The value of this tag, the number of the document, needs to be written to the XML
Sales Header table in the database. Before this can happen though, the value needs to
be checked to ensure that it is valid. However, the XMLport design will not work
because the position of the <DocumentNo> tag violates the validation order of the
XML Sales Lines table.

To solve the problem, you could, for example, assign the XML tag names that were
mapped to the XML Sales Lines table to a temporary table:

You could then write code that assigns the value of the <DocumentNo> tag to the
correct table, and in the correct validation order, after the value has been assigned to a
450

21.4 Validating Data
temporary table record. This means that the <DocumentNo> value must be copied
from the temporary record to the real record before any of the other fields are copied
to the XML Sales Lines table.

By using temporary tables, you will be able to solve most of the cases where you can
see that an incoming XML document contains tags in a sequence that would violate
the database validation order.
451

Chapter 21. XMLports
21.5 XMLports and Business Notifications

If you are running Microsoft Business Notifications with Dynamics NAV, you can
associate XMLport events with an XMLport. Users who run Business Notifications can
then subscribe to these events. For example, you could define the event "Sales Order
Created" for a Sales Order XMLport. You will usually design special XMLports for the
Business Notifications system.

XMLport events are called from codeunits to raise an event to Business Notifications.
The XMLport then sends an XML document to the Business Notifications system. Based
on the content of the XML document and the event raised, the Business Notifications
system will send event information to subscribers. For example, in the case of the "Sales
Order Created" event, it will check to see who has subscribed to this event and send
them e-mail notification that a sales order has been created.

The events that you define can be more detailed than simply "Sales Order Created". For
example, you can define an event that is raised when the total amount of a sales order
exceeds a certain amount.

You define events in the XMLport Event Designer, which you open by selecting the
XMLport Events option in the View menu when you are designing an XMLport. The
following screenshot shows the XMLport Event Designer in which three events have
been defined for a Purchase Order XMLport:

Example

You want to raise an event that provides notification when a customer is blocked, that is, when
Blocked changes from False to True. You therefore design an XMLport that contains the necessary
data, for example, the ID and Name of the customer, and the date when the change occurred. You
define an event called "Blocked" in the XMLport Event Designer and you declare the XMLport as a
local variable called "CustXMLDoc". Finally, you add the following code to the OnModify trigger in
the Customer table:

Refer to the Business Notifications online Help for further information.
452

Part 9
MenuSuite Objects

Chapter 22

MenuSuite Objects

This chapter describes the MenuSuite object, which contains
the menu suite content that is displayed in the Navigation
Pane and in the Navigation Pane Designer.

The chapter contains information about the following
subjects:

· Menu Suite Fundamentals

· Customizing a Menu Suite

· Exporting a MenuSuite Object

· Upgrading Menu Suite Content

Chapter 22. MenuSuite Objects
22.1 Menu Suite Fundamentals

The MenuSuite object contains the main menu content that is displayed in the
Navigation Pane and in the Navigation Pane Designer. A menu suite is a set of menus.
Each menu contains content for a specific departmental area, for example, Finance or
Manufacturing.

Creating and Designing MenuSuite Objects
To create a new MenuSuite object or design an existing one, you click the MenuSuite
button in the Object Designer, and then click New or Design.
0

Clicking New This opens a dialog asking you to specify which design level you want
to create an object for. If you have already created a MenuSuite object for all the levels
you have permission to, a message will appear informing you of this. Once you have
made a selection, the Navigation Pane Designer opens. The MenuSuite object level that
you are working on is shown in the header section of the Navigation Pane Designer.

Selecting a MenuSuite object and then clicking Design This opens the Navigation
Pane Designer with the chosen menu suite content displayed. The MenuSuite object
level that you have selected is shown in the header section of the Navigation Pane
Designer

You also have the following options:

• You can select the File, Import/Export, and Tools, Translate, Import/Export options.
• You can compile MenuSuite objects (F11 or Tools, Compile). It is the object

references that are compiled. If the MenuSuite object contains a reference to a non-
existing form, report, batch job, dataport or codeunit, a compilation error occurs.

The Run button in the Object Designer is disabled when you click the MenuSuite
button because a MenuSuite object cannot be run.
456

22.2 Customizing a Menu Suite
22.2 Customizing a Menu Suite

You customize a menu suite in the Navigation Pane Designer. In the following, you can
read about the design options that are available for developers. You access design
options by right-clicking on menu buttons, menu groups, menu items or anywhere in
the content pane area.

Refer to the Dynamics NAV online Help for information about the design options for
administrators, which can also be used by developers.

Creating Menu Items
To create a menu item, you right-click in the content pane area or on a menu group or
menu item, and select Create Item. The Create Item window opens in which you
specify the menu item’s object type, object ID, caption and captionML (multilanguage
caption). An example is shown in the following:

For example, if you have created a new report and want to add it as a menu item to a
particular menu, then you select Report in the dropdown box in the Object Type field,
and use the lookup in the Object ID field to select the report from the Report List.
When you then click the Caption field, the name of the report is automatically filled in.
You can rename it here if necessary.

The CaptionML field will by default show the code for the language that you use on
your computer and the name of the menu item. If you have designed a menu item that
will be used in different languages by different users, you must give the menu item a
name in each language. When you click the AssistButton in the field, the
Multilanguage Editor window opens where you can enter a menu item name for
each language code:
457

Chapter 22. MenuSuite Objects
Setting Properties
There are four properties that you can set for a menu item in the Item Properties
window; Object Type, Object ID, Caption and CaptionML. You open this window by
right-clicking a menu item and selecting Properties.

MenuSuite Object Levels
Microsoft Business Solutions provides a generic MenuSuite object, which we call the
MBS level. This object is changed in various ways before end users see its content.
These changes are applied at different levels, which are categorized as Country/Region,
Add-on, Partner and Company. For example, the MenuSuite object is changed when
the application undergoes localization changes, which takes place at the
Country/Region level. If you are a developer working at a Microsoft Business Solutions
partner, you customize a MenuSuite object at the Partner level. You can also configure
a MenuSuite object at the Company level, which is the level that administrators work
on.

Changes that are made to a MenuSuite object are stored as the differences between
the previous MenuSuite object level and the current one. For example, when a
company administrator configures a MenuSuite object at the Company level, the
modifications are stored as the differences between the Company level and the Partner
level, which was the previous level. If you export a MenuSuite object in text format and

Property Description

Object Type In the Object Type field, you can make a selection in the
dropdown box. The following object types are available:
Table, Form, Report, Batch Job, Codeunit, Dataport.

Object ID You use the lookup in the Object ID field to select a
specific object from a list. For example, if you had
selected Report as the Object Type, clicking the lookup
will display the Report List.

Caption By default, the Caption field contains the name that has
been assigned to the menu item. You can rename it here
if you want.

CaptionML The CaptionML field contains the code for the language
that you use on your computer and the name of the
menu item, for example, ENU=General Journals. If the
menu item will be used in different languages by
different users, you must give the menu item a name in
each language. When you click the AssistButton in the
CaptionML field, a window opens where you can enter a
menu item name for each language code.
458

22.2 Customizing a Menu Suite
then open the text file, you will see information about the changes that you have made
seen in relation to the previous level.

With the exception of the Add-on MenuSuite object for which a maximum of 10
instances is allowed, there can only be one MenuSuite object for each level.
459

Chapter 22. MenuSuite Objects
22.3 Exporting a MenuSuite Object

You can export a MenuSuite object in Dynamics NAV object format (*.fob) or in text
format. The text file contains information about the changes that have been made to
the object since the previous level. In the following you can see an example of a text
file that contains the changes that have been made to a MenuSuite object at the
Company level.

Example

When an administrator makes configuration changes to a menu suite, these changes are saved at
the Company level. When this Company-level MenuSuite object is exported in text format, the text
file contains information about the changes that have been made to the object since the previous
level, which in this case would be the Partner level. Let us suppose that an administrator has made
the following changes to his company's menu suite:

- In the Finance menu, he has deleted a menu group called Setup, which contained one menu
item called Accounting Periods.

- He has added a new menu item, G/L Account Card, to the General Ledger menu group in
the Finance menu.

- He has moved the G/L Account Card menu item so that it is placed between the Chart of
Accounts and Bank Accounts menu items in the General Ledger menu group.

The text file would contain the following information:

OBJECT MenuSuite 70 Company
{
OBJECT-PROPERTIES
{
Date=19-04-04;
Time=16:04:10;
Modified=Yes;
Version List=;
}
PROPERTIES
{
}
MENUNODES
{

{ MenuItem ;[{FA8395A4-7A0B-4524-B0FD-20436D9711A4}] ;Name=G/L Account
Card;

CaptionML=ENU=G/L Account Card;
MemberOfMenu=[{F8D2429D-034B-4C58-9B5E-81BE962DB1BC}];
RunObjectType=Form;
RunObjectID=17;
ParentNodeID=[{B12180CF-0EFB-43AD-9118-7765E953AAFD}];
Visible=Yes;
NextNodeID=[{7A5B6DDE-B44B-41A0-95DA-69B7109F0E32}] }

{ ;[{1BB06483-AFFD-4750-BF62-3ABA035E11B7}];
Deleted=Yes}

{ ;[{DF601C8A-07F7-4841-8929-9F2065BCB302}];
Deleted=Yes}

{ ;[{8AC7917D-2C91-457D-80D6-A24B42F71AE7}];
NextNodeID=[{FA8395A4-7A0B-4524-B0FD-20436D9711A4}]}

 }
}

460

22.3 Exporting a MenuSuite Object
The content of a MenuSuite object can be described as having the following
characteristics:

• It consists of a set of menus.
• A menu contains a collection of menu nodes, which are displayed in the Navigation

Pane/Navigation Pane Designer in a tree structure.
• A menu node can be either a menu group or a menu item.
• A menu node has a globally unique identifier (GUID) and various properties.
• A menu group contains a collection of menu nodes.
• A menu item is the lowest level in the tree. When you click a menu item, its

associated form, report, batch job, dataport or codeunit is run.
461

Chapter 22. MenuSuite Objects
22.4 Upgrading Menu Suite Content

Menus in a menu suite that are inherited from the previous MenuSuite object level
have the symbol ">>" on the menu button to the left of the menu name. These menus
will be upgraded when you upgrade the corresponding MenuSuite object. Any
changes that you have made to these menus will be merged into the new menu suite
when you upgrade. For example, a menu item that you have added to a menu group –
but where the menu group’s contents now have changed after an upgrade – will be
placed as the last menu item in the menu group.

However, there will be cases where a straightforward merge cannot be carried out. For
example, if you have added a menu item to a menu group that is no longer a part of
the menu after an upgrade, then no merge can be made. Instead, the menu item will
be placed in a Lost Items group at the bottom of the menu tree. Another example
would be if you had added one or more menu items to a menu that is no longer
present in the menu suite after an upgrade. In such a situation, the menu items will be
placed in a Lost Items menu.

After an upgrade, you can take action on the menu items in a Lost Items group or
menu – ither by inserting them somewhere in the current menu (in the case of the Lost
Items group), in another menu or by deleting them. A Lost Items group or menu is not
visible in the Navigation Pane at runtime.

New menus that you have created are not affected by an upgrade. If there are new
menu items available after the upgrade that you would like to insert in these menus,
you will have to add them manually.
462

Part 10
Multilanguage Functionality

Chapter 23

Multilanguage Functionality

This chapter explains certain aspects of the multilanguage
functionality of Dynamics NAV.

The chapter contains information about the following
subjects:

· Multilanguage Functionality

· Learning the Code Base Language

· Number Ranges for Text Constants

Chapter 23. Multilanguage Functionality
23.1 Multilanguage Functionality

Everything to do with multilanguage functionality in C/SIDE in Dynamics NAV runs
automatically. Note that to take advantage of this multilanguage functionality, you
must upgrade your application to the multilanguage-enabled Dynamics NAV. For
more information, see the manual Upgrade Toolkit on the Dynamics NAV product DVD.

Defining the Current Application Language
C/SIDE executes the ApplicationLanguage function (trigger), with ID 4, on Codeunit 1
to determine the current language of the application. This trigger must return an
integer (language ID). The trigger is not allowed to access the database. If the trigger
does not contain a language code, C/SIDE reads the value from the fin.stx file, which
contains general texts used by C/SIDE.

An algorithm has been built into C/SIDE to handle the hierarchy of languages that are
available. This algorithm defines which language to show if one or more text strings are
missing from the current application language. For more information, see the section
"Displaying Text" on page 470.

For more information about language ID, see the section "The Windows Language
Virtual Table" starting on page 469.

Selecting a Language from the User Interface
In a multilanguage-enabled database, if the user click Tools, Language, the code
generated by the SetGlobalLanguage trigger opens Form 534. In this Application
Languages window, users can select the language in which captions in windows, on
command buttons, and so on are displayed.

Text Constants
The C/AL Globals and C/AL Locals windows have a Text Constants tab with a
hidden column, ConstValueML, which displays all the languages for a text constant.

Text constants replace the use of hard-coded language dependent text strings.

For more information about the multilanguage use of text constants, see page 472, and
for more information about creating text constants, see the section called "Defining
Variables, Text Constants and Functions in Codeunits" on page 282.
466

23.1 Multilanguage Functionality
Language Modules
A language module contains the same information as the Translate Import/Export data
files. However, a language module contains text for only one language layer. Language
modules are binary files that you cannot modify with external tools.

You can import a language module by clicking Tools, Language Module, Import, and
you can export one by clicking Tools, Language Module, Export.

Installing *.STX, *.ETX, *.CHM and *.HH files for Multilanguage
You must install the *.stx, *.etx, *.chm and *.hh files for each language that the
users will have access to in subdirectories. The name of a subdirectory must be the
three-letter language code (Abbreviated Name) used by Windows for the particular
language. For more information, see the section called "The Windows Language Virtual
Table" on page 469.

If you create a subdirectory for a language and then install the *.stx, *.etx, *.chm
and *.hh files while Dynamics NAV is running, the language will not be available until
you restart the program.

Adding a Language Layer
To let the user select a certain language from the Tools menu, that language must be
represented as a granule in the license file.

The application must also be translated to that language, so that you can import it into
the database by clicking Tools, Translate, Import. You can either export all the text
strings and translate them in a translation tool, such as the Dynamics NAV Localization
Workbench, or you can enter the translation of the text strings directly into the
Multilanguage Editor.

To add a translation in the Multilanguage Editor:

1 Open the Object Designer and open the object that you want to add a translation to.

2 Open the Properties window (SHIFT+F4).

3 In the CaptionML property, click the AssistButton k and the Multilanguage Editor
window appears.

4 In the Language field, click the AssistButton p and the Windows Language List
window appears.

5 Select the language that you want to add form the list.

You can also simply enter the three-letter code for the language that you want to
add and move the cursor to the Value field. The system automatically replaces the
abbreviation with the full language description.

6 In the Value field, enter the correct name for this object in this language.

7 Click OK to save the information you have entered.
467

Chapter 23. Multilanguage Functionality
In order for the new language layer to work with the application, you must place the
relevant fin.stx file in the subdirectory for that language. In other words, to allow the
user to select a specific language from the Tools menu, the following must be true:

• The application must have the correctly named subfolder.
• The subfolder must contain the correct fin.stx file.
• The text strings in the database are marked with the correct language ID.
• The license file contains the correct granule.

The Language Subfolder
Each language that the user will have access to must be represented by a subfolder in
the Dynamics NAV directory structure.

Each language subfolder must contain the following:

• fin.stx file
• fin.etx file
• online Help files (*.chm and *.hh).

Note

If you are installing a Swiss add-on to the application, and there is online Help for the
add-on in German (Swiss) only, it must be installed in the DES subfolder. All Help files,
such as *.hh, *.chm and*.hlp files, are placed in language-specific subfolders.

Deleting a Language Layer
Once a language has been introduced into a database, there is only one way to delete
it again.

To delete a language layer:

1 Click Tools, Language Module, Export and the Language Module Export window
appears:

2 In the Language field, click the AssistButton p and select the unwanted language in
the Windows Language List window and click OK.

3 In the Language Module Export window, place a check mark in the Delete
language field and click OK.
468

23.1 Multilanguage Functionality
The Windows Language Virtual Table
The virtual, read-only Windows Language table displays the languages that Windows
supports. You can view its contents by designing a tabular-type form based on the
table.

The Windows Language virtual table contains the following fields:

Field Name Description

Language ID This field is the primary key. It displays the standard Windows
language ID for a specific language.
C/AL supports the setting of language using the
GLOBALLANGUAGE, WINDOWSLANGUAGE and object. LANGUAGE
properties. The values of these properties are taken from this field.

Primary Language ID Windows languages are grouped. A group consists of a primary
language and zero or more secondary languages. The Primary
Language ID field contains the Windows Language ID of the
primary language.

Name This field contains the standard Windows name for the language.

Abbreviated Name This field is a secondary key. It contains the standard Windows
three-letter code for the language.

Enabled A check mark indicates that the language is either globally enabled,
form enabled, report enabled or dataport enabled. Your license file
determines how a specific language can be used.

Globally Enabled A check mark indicates that the license file allows you to set the
language in question as the global language for the whole
application.

Form Enabled A check mark indicates that the license file allows forms to be
shown in a language other than the global language.

Report Enabled A check mark indicates that the license file allows reports to be
printed in a language other than the global language.

Dataport Enabled A check mark indicates that the license file allows dataports to be
shown in a language other than the global language.

Primary Code Page The code page for a language defines the character set available for
that language. If you mix text by using multiple code pages, you
may not obtain the expected result.

STX File A check mark indicates that an *.stx file is installed for the
language in question. An *.stx file contains general texts used by
C/SIDE, for example, menu labels and system table names.

ETX File A check mark indicates that an *.etx file is installed for the
language in question. An *.etx file contains error messages.

Help File A check mark indicates that an *.hlp or a *.chm file is installed
for the language in question.
469

Chapter 23. Multilanguage Functionality
Tab Controls
If you create a tab control without setting the PageNames property, C/SIDE will use the
names 0, 1, 2, and so on as names for pages containing visible controls. Pages that do
not contain controls or that do not contain visible controls are not displayed.

Maintaining SQL Views
In the SQL Server Option for Dynamics NAV, you can set the option Maintain SQL
Views. This setting determines whether SQL Server will create and maintain a view for
each language ID that is added to a table or field in Dynamics NAV.

If you select this option, external tools are able to use these views to gain access to the
Caption ML property of the object in the required languages rather than the name
supplied in the table. For more information, see the section "Accessing Dynamics NAV
Tables with External Tools" on page 82.

NAV ODBC
NAV ODBC is multilanguage enabled. A NAV ODBC user can retrieve the application
data from Dynamics NAV in different languages independent of the current Dynamics
NAV application language.

NAV ODBC covers the following multilanguage features:

• Table name
• Field name
• OptionString value
• Date Formula

For more information, see the manual Microsoft Dynamics NAV ODBC Driver 5.0 Guide.

Displaying Text
Whenever C/SIDE needs to display a text, it searches in the current language. If C/SIDE
cannot find the text, it searches for the text in another language.

If, for example, the user wants to use German (Swiss) and the user wants to see a form
that contains strings that do not exist with the language ID for German (Swiss), the
algorithm will tell the system to look for a string with the language ID for German
(Standard). This is because German (Standard) is the primary language for German
(Swiss).

The algorithm that tells C/SIDE how to search for the right text uses the following
order:

1 The object language

2 The primary language of the object language

3 The global language selected by the user

4 The primary language of the global language selected by the user

5 The application language
470

23.1 Multilanguage Functionality
6 The primary language of the application language

Multiple Document Languages
You could run multiple document languages before you had a multilanguage-enabled
database. But the multiple document languages functionality benefits from
multilanguage because you now get the languages automatically.

If you have documents that you want to print in the language of the recipient rather
than in your own working language, you can add a single line of code in the document
to handle this. This functionality is already enabled for most printing reports in the
standard Dynamics NAV database. The document is printed in the language that is
specified in the Language Code field in the Customer Card window.

In reports that need the multiple document languages functionality, you must insert
the following C/AL code as the first line in the OnAfterGet Record() trigger:

CurrReport.LANGUAGE := Language.GetLanguageID("Language Code")

Secondly, for each of these reports, you must create a new variable, Language, with the
data type Record pointing to the Language table (table 8).

When you have compiled the object, it will no longer print in the user’s working
application language if another language has been specified in the Customer Card
window.
471

Chapter 23. Multilanguage Functionality
23.2 Developing Multilanguage-Enabled Applications

When you are developing in a multilanguage-enabled environment, it is important to
remember the following three rules of thumb:

• Everything has a Name property in English (United States).
• Text constants replace text strings such as error messages.
• Everything that the user will see must have a Caption property.

Before you start working in a multilanguage-enabled database, you should set the
application language as English (United States). You do this by clicking Tools,
Languages and selecting English (United States).

Name Property
In Dynamics NAV, the code base is English (United States). This means that the Name
property of, for example, an object must always be in English (United States).

The code base in English (United States) includes, among other things, the following:

• Object names
• Field names
• Function and variable names
• Comments
• Option strings
• Control names

Text Constants
Error messages and other text strings must be entered as text constants so that they
can be easily translated.

Text constants are automatically assigned unique IDs by C/SIDE. You can see the ID for
a text constant by opening the C/AL Globals window, selecting a text constant and
opening its Properties window.

In a single-language database, you can code error messages as text strings directly in
the code. In the new multilanguage-enabled database, this must now be entered as:

IF FileName = '' THEN
__ERROR(Text000);

In this example, Text000 is an available name for a text constant in that object. The
text constants must then be created in the C/AL Globals window. For more
information about creating text constants, see the section called "Accessing Dynamics
NAV Tables with External Tools" on page 82.

When you add new text constants to existing objects, you can name them according to
your needs. C/SIDE assigns unique IDs according to the number ranges listed in section
"Number Ranges for Text Constants" on page 479, which makes it easier for you to
upgrade customized objects.
472

23.2 Developing Multilanguage-Enabled Applications
When you are working in the C/AL Editor and place the cursor on a text constant, the
content of the text constant will be shown in the message line in the language you
have chosen as the application language. For more information, see the section called
"C/AL Scanner" on page 477.

Caption Property
Everything that is displayed to the user must have a Caption property. The Name
property is always English (United States), so the Caption property is used to show the
user the name in their own language.

For example, if you want to call on a field from the code in connection with an error
message, you will call it by its Name property but make sure that the Caption property
is displayed:

VATPostingSetup.FIELDCAPTION("VAT Calculation Type")

where VATPostingSetup is the Name property in English (United States), and
FIELDCAPTION makes sure that the Caption property in the relevant language is used
rather than the Name property.

When you are programming, you should always remember the difference between the
Name property and the Caption property to ensure that you get the expected result
when running the code.

C/SIDE can help you in a number of ways as described in the section "Learning the
Code Base Language" on page 476.

CaptionML Property
The CaptionML property makes it possible to change languages. Everything must have
a CaptionML property where the value is set to the correct term in English (United
States). This value is followed by whatever translations there may be of that object or
field. The Caption property copies the value for the current application language from
the CaptionML property.

Example

Table 37, Field 1 has the following CaptionML values:

ENU=Document Type;FRC=Type document

In the CaptionML Value field, you can either enter the value for English (United
States) directly, or you can click the AssistButton k to open the Multilanguage Editor
and enter the value there.

If you are creating a new field, you must enter the value for English (United States) in
the Name field to get started.

You must click OK to save the information when you exit the Multilanguage Editor
window.
473

Chapter 23. Multilanguage Functionality
Note

If you have created a new field in a form, the content of the Caption property will not
be shown on the form until the form has been compiled. If you have copied another
field on that form and modified the properties, the content of the Caption property will
be shown on the form even in the Form Designer. This rule includes request forms for
reports.
But if you enter the caption directly in the Value field, you will not have to compile the
form to see the Caption property.

Creating Captions
If your application does not have Caption properties for everything that is translated,
you must insert these properties. You can do this manually or use the make-ml tool. For
more information about this tool, see the manual Upgrade Toolkit for Dynamics NAV.

You should pay special attention to the following:

• Option buttons
• Option strings
• Option variables

Option Buttons
For options buttons, you must make sure that the CaptionML property is correct.

Note

The value in the OptionValue field are always in English, because this value is used by
the corresponding global variable, and code must always be in English (United States).
You must make sure that the value for English (United States) in the CaptionML field is
the same as in the OptionValue field.

Option Strings
For option strings, for example, a control in a request form, you must make sure that
the OptionsCaptionML property is correct.

Note

The Name property must remain the number of the control, for example, Control 9.

Option Variables
For option variables, for example, in a source expression for a FORMAT, STRSUBSTNO,
ERROR, MESSAGE, or CONFIRM, you must insert a SELECTSTR string to select an option
from a text constant. You should then let the text constant contain the options from
the option string.
474

23.2 Developing Multilanguage-Enabled Applications
Date Formulas
When you are creating a field in a table and you want this field to contain a date
formula, you must apply the DateFormula data type to the field. This data type is non-
language dependent and gives the CALCDATE function multilanguage capabilities.

You achieve a similar result if you apply the Code or Text data type to the field and
then set the Dateformula property to Yes. However, this solution makes the data
language-dependent, which means that users with different application languages
cannot use the same data.

Usage in C/AL Code
When you use the CALCDATE function to calculate dates, you must enter the date
formula in English (United States) but with angle brackets (< >) around the date
formula. Date formulas are translated but if you place angle brackets around them, the
code will be valid regardless of the application language. In this way, the calculation
will be the same no matter which application language the user has selected.

Example

EndOfMonth := CALCDATE('<CM>',TODAY);
475

Chapter 23. Multilanguage Functionality
23.3 Learning the Code Base Language

If you are not used to working with English as the code base language, C/SIDE can help
you get used to working in the new environment in a number of ways.

Generating a Dictionary
You may want to generate a translation of the variables so that you can compare the
English name for the variable to the name in your local language.

You can use the Dynamics NAV Localization Workbench (NLW) to generate this
translation. Use NLW to create a project based on the translation your local Microsoft
Certified Business Solutions Partner created for the previous version of Dynamics NAV,
and export the relevant fields to a comma-separated file. You can then open this file in,
for example, Microsoft Excel and use it as a dictionary.

The relevant fields are:

• Source Text
• Target Text
• SourceResourceID

Note

You must first set a filter to only show variables before you export the file from NLW.

For more information about the Dynamics NAV Localization Workbench, see the
manual Dynamics NAV Localization Workbench User’s Guide, which is included in the
NLW.cab file.

How to See Both Captions and Names
In a number of different C/SIDE windows, you can see both the Name property and the
Caption property of the selected item, as described in the following sections.

Zoom Functionality
When you use the Zoom functionality on an object, you can choose to see both the
local language and English (United States) for the fields.

To see both the local language and English (United States):

1 Open the object, for example, a purchase order, and place the cursor in the relevant
field.

2 Click Tools, Zoom (CTRL+F8) to zoom in.

3 In the Zoom window, right-click one of the column headers and select Show
Columns from the list.

4 In the Show Columns window, place a check mark next to Field Name and click
OK.
476

23.3 Learning the Code Base Language
The Field column will show the caption values for the current application language and
the Field Name column will show the name properties.

Table List, Form List, Field List, Object List and Field Menu
In the Object Designer, Table List, Form List, Field List, Object List and Field Menu
windows, you can see both the Name property and the Caption property for the items
on the list:

The first column from the left contains the object number, the second column contains
the Name property, and the third column contains the Caption property in the current
application language.

In the Object Designer and Field Menu windows, you can hide the Caption column
by right-clicking the Caption column header and selecting Hide Column from the list.
I

You can show the column again by following the procedure described in the section
"Zoom Functionality".

For more information about the use of captions, see page 473.

C/AL Scanner
In the C/AL Editor, a scanner can show you captions for objects, fields and text
constants. Since the code base should be in English, the scanner can help you read the
code correctly.
477

Chapter 23. Multilanguage Functionality
When you place the cursor on an object, field or text constant, the C/AL scanner will
look for the caption property in the current application language for the object, field or
text constant. The scanner then displays this information in the status bar at the bottom
of the Dynamics NAV window.

C/AL Symbol Menu
A new subcategory has been added to the C/AL Symbol Menu window: FieldCaption.
You can see this when you have selected a variable that relates to a table record:

If you have selected a field name, you can see the caption for that field in the current
application language in the bottom left-hand corner of the window. In other words, in
the third column in the C/AL Symbol Menu window, you can see the Name property,
and in the bottom left-hand corner of the window, you can see the Caption property.
In the picture, the current application language is English (United States) so the two
properties are the same.

If you have selected a caption, you can see the corresponding field name for that
caption in English (United States) in the bottom left-hand corner of the window. In
other words, in the third column, you can see the Caption property, and in the bottom
left-hand corner of the window, you can see the Name property.

For more information about the C/AL Symbol Menu window, see the section called
"Using the C/AL Symbol Menu" on page 287.

This is the Caption property of the field whose Name property
you have selected
478

23.4 Number Ranges for Text Constants
23.4 Number Ranges for Text Constants

C/SIDE assigns unique IDs to text constants according to the following table of number
ranges:

Developer From To

Microsoft Business Solutions HQ 000 9,999

Microsoft Business Solutions Netherlands 1,000,000 1,009,999

Microsoft Business Solutions Belgium 1,010,000 1,019,999

Microsoft Business Solutions USA 1,020,000 1,029,999

Microsoft Business Solutions Canada 1,030,000 1,039,999

Microsoft Business Solutions United Kingdom 1,040,000 1,049,999

Microsoft Business Solutions Iceland 1,050,000 1,059,999

Microsoft Business Solutions Denmark 1,060,000 1,069,999

Microsoft Business Solutions Sweden 1,070,000 1,079,999

Microsoft Business Solutions Norway 1,080,000 1,089,999

Microsoft Business Solutions Finland 1,090,000 1,099,999

Microsoft Business Solutions Spain 1,100,000 1,109,999

Microsoft Business Solutions Portugal 1,110,000 1,119,999

Microsoft Business Solutions France 1,120,000 1,129,999

Microsoft Business Solutions Italy 1,130,000 1,139,999

Microsoft Business Solutions Germany 1,140,000 1,149,999

Microsoft Business Solutions Switzerland 1,150,000 1,159,999

Microsoft Business Solutions Austria 1,160,000 1,169,999

Microsoft Business Solutions Poland 1,170,000 1,179,999

Microsoft Business Solutions Lithuania 1,180,000 1,189,999

Microsoft Business Solutions Latvia 1,190,000 1,199,999

Microsoft Business Solutions Estonia 1,200,000 1,209,999

Microsoft Business Solutions Russia 1,210,000 1,219,999

Microsoft Business Solutions Czech Republic 1,220,000 1,229,999

Microsoft Business Solutions Slovenia 1,230,000 1,239,999

Microsoft Business Solutions Australia 1,240,000 1,249,999

Microsoft Business Solutions New Zealand 1,250,000 1,259,999

Microsoft Business Solutions Singapore 1,260,000 1,269,999

Microsoft Business Solutions South Africa 1,270,000 1,279,999

Microsoft Business Solutions India 1,280,000 1,289,999

Microsoft Business Solutions Argentina 1,290,000 1,299,999
479

Chapter 23. Multilanguage Functionality
If you are converting an object with general customer modifications using the conv-ml
tool, specify a random number between 1,000,000,000 and 1,000,999,999 as the start
number of the number range.

Microsoft Business Solutions Brazil 1,300,000 1,309,999

Microsoft Business Solutions Mexico 1,310,000 1,319,999

Microsoft Business Solutions Croatia 1,320,000 1,329,999

Microsoft Business Solutions North
Africa/Middle East

1,330,000 1,339,999

Microsoft Business Solutions Thailand 1,340,000 1,349,999

Microsoft Business Solutions Malaysia 1,350,000 1,359,999

Microsoft Business Solutions Hungary 1,360,000 1,369,999

Microsoft Business Solutions Ireland 1,370,000 1,379,999

General customer modifications 1,000,000,000 1,000,999,999

Add-on 1,100,000,000 1,199,999,999

Developer From To
480

Part 11
Beyond the Basics

Chapter 24

SumIndexFields

This chapter describes SumIndexFields™, which are the basis
for the FlowFields in a C/SIDE application. This chapter
describes how SIFT™ works on C/SIDE Database Server as
well as some details of the way that SIFT is implemented in
the SQL Server Option for Dynamics NAV. This information
will help programmers develop efficient applications that
use SumIndexField Technology.

· SumIndexFields

· SIFT and the SQL Server Option for Dynamics NAV

Chapter 24. SumIndexFields
24.1 SumIndexFields

SumIndexField Technology (SIFT™) has been designed to improve performance when
carrying out such activities as calculating customer balances. In traditional database
systems this involves performing a series of database calls and calculations before
arriving at a result. The power and efficiency of SIFT on C/SIDE Database Server makes
calculating sums for numeric columns in tables extremely fast, even in tables that
contain thousands of records. This powerful feature is used throughout the Dynamics
NAV application and has also been implemented in the SQL Server Option.

SIFT and C/SIDE Database Server
A SumIndexField is a fundamental feature which is the basis of FlowFields. A
SumIndexField is associated with a key; each key can have at most 20 SumIndexFields.
During database design, a field of the decimal type can be associated with a key as a
SumIndexField. This tells the DBMS to create and maintain a structure which contains
the accumulated sum of values in a column. When a new current key is selected, any
SumIndexField associated with it becomes accessible.

The following figure illustrates a table where the Amount field (column) is defined as a
SumIndexField in the Account No + Date key. This enables the DBMS to automatically
maintain the accumulated sum of the column. Every time a change is made to a field in
the column, the accumulated values are updated.

To the right of the table is shown an area in the database where the accumulated sums
for the Amount column are kept. In the previous figure, the third field in the column,
holding the accumulated sum, contains the value 600 because the first three Amount
values are 100, 200 and 300, respectively – a total of 600. The fourth virtual field
contains 1000, the total of the first four values in the Amount column, and so on. If the
table contained a second SumIndexField, its values would be accumulated in the same
way.

50040

50020

50000

50000

50020

Account No. Text Amount

100

200

300

400

500

(SumIndexField)
60

210

300

90

Date

100

300

1000

1500

600

Accumulated
Sum

02-01-96

01-25-96

01-02-96

01-01-96

01-04-96

=50020

400

600

1000

300

01-25-96

01-04-96

300

50020

50020

1000 - 300 = 700

A table sorted by
Account No. +
Date

A FlowFilter is
used in the
calculation of the
FlowField

Sum of the
Amount column
when the filter is
applied

The same table
when the
FlowFilter is
applied
484

24.1 SumIndexFields
What advantages do SumIndexFields offer? Sums (of columns) can be quickly
calculated and the result displayed in FlowFields. Let us say you want the sum of all the
values in the Amount fields. In a conventional system, the DBMS is forced to access
every record and add each value in the Amount field, a very time-consuming operation
in a database with thousands of records. Here, you would create a FlowField, define the
calculation formula of this FlowField to sum the Amount field, and the DBMS only
needs retrieve the value from the SumIndexField.

Operations with SumIndexFields are as fast when FlowFilter fields are applied. The
second table in the previous figure shows a group of records selected by a FlowFilter
field in the Account No. field. Two records fulfil the conditions of the calculation filter.
Only two accesses are needed to sum the Amount for these records: one access to get
the accumulated sum associated with the last record before the specified range, and
one access to get the accumulated sum associated with the last record in the specified
range.

The value 300 is subtracted from the value 1000 to produce the correct sum (700). No
matter how many records there are in the selected range, the system will always need
to perform only two accesses in order to compute the sum.

SIFT has been built into the index structure used on C/SIDE Database Server and the
more SumIndexFields that are added the larger the index becomes. However, the time
used to maintain the accumulated sum for SumIndexFields is negligible due to a special
index structure used in the DBMS.
485

Chapter 24. SumIndexFields
24.2 SIFT and the SQL Server Option for Dynamics NAV

As mentioned earlier, SIFT has also been implemented in the SQL Server Option for
Dynamics NAV. This section describes in some detail the way that SIFT is implemented
in the SQL Server Option.

SIFT Components
A SumIndexField is always associated with a key and each key can have a maximum of
20 SumIndexFields associated with it. In this document we will refer to a key that has at
least one SumIndexField associated with it as a SIFT key.

When you set the MaintainSIFTIndex property of a key to Yes Dynamics NAV will regard
this key as a SIFT key and create all the SIFT structures that are needed to support it.
However, disabling the SIFT key by setting the MaintainSIFTIndex property to No can
improve performance in certain circumstances. Setting this property to No means that
the SIFT functionality is implemented by calculating the totals online instead of using
the precalculated sums that are maintained by SIFT.

Any field of the Decimal data type can be associated with a key as a SumIndexField.
Dynamics NAV then creates and maintains a structure that stores the calculated totals
that are required for the fast calculation of aggregated totals.

In the SQL Server Option for Dynamics NAV this maintained structure is a normal table
(a SIFT table). The layout of a SIFT table is described later in this article. As soon as the
first SIFT table is created for a base table, a dedicated SQL Server trigger is also created
and is then automatically maintained by Dynamics NAV. This is known as a SIFT trigger.
A base table is a standard Dynamics NAV table, as opposed to an extra SQL Server table
that is created to support Dynamics NAV functionality.

One SIFT trigger is created for each base table that contains SumIndexFields. This
dedicated SQL Server trigger supports all the SIFT tables that are created to support
this base table. The purpose of the SIFT trigger is to implement all the modifications
that are made on the base table in every SIFT table that is affected. This means that the
SIFT trigger automatically updates the information in all the existing SIFT tables after
every modification of the records in the base table.

SIFT and Cache
If you ask Dynamics NAV to calculate a total (CALCSUMS), SIFT will calculate all the
totals for all the SumIndexFields that are related to that key in the base table. You will
receive the total you requested and all the aggregations will be stored in cache. These
totals can be reread from the cache to answer any subsequent requests provided that
the cache is still valid. SIFT will do this without issuing any statement to SQL Server.

Naming Conventions
This section describes the naming conventions that are used when generating the SIFT
components on the SQL Server Option for Dynamics NAV.
486

24.2 SIFT and the SQL Server Option for Dynamics NAV
SIFT Triggers
The body of the SIFT trigger is generated by Dynamics NAV and is maintained
automatically so that it reflects every change that is made to the design of the base
table as well as its fields, keys and SumIndexFields.

The name of the SIFT trigger has the following format:

<base Table Name>_TG.

For example, the SIFT trigger for table 17, G/L Entry is named:

CRONUS International Ltd_$G/L Entry_TG.

SIFT Tables
A SIFT table is a SQL Server table that is created and maintained automatically by
Dynamics NAV and used to store precalculated totals based on values that are stored in
SumIndexFields in base tables. A SIFT table is created for every base table key that has
at least one SumIndexField associated with it. No matter how many SumIndexFields are
associated with a key, only one SIFT table is created for that key.

The name of the SIFT table has the following format:

<Company Name>$<base Table ID>$<Key Index>.

For example, one of the SIFT tables created for table 17, G/L Entry is named:

CRONUS International Ltd_$17$0.

The Key Index is a calculated integer value starting from 0. This means that the first SIFT
key in the base table is given the value 0, the next is 1 and so on. These values are
updated if any changes are made to the base table.

For example, table 17, G/L Entry has the following key layout:

Enabled Key SumIndexFields MaintainSIFTIndex

YES Entry No. YES

YES G/L Account No., Posting
Date

Amount, Debit Amount,
Credit Amount, Additional-
Currency Amount, Add.-
Currency Debit Amount,
Add.-Currency Credit
Amount

YES

YES G/L Account No., Business
Unit Code, Global Dimension
1 Code, Global Dimension 2
Code, Close Income
Statement Dim. ID, Posting
Date

Amount, Debit Amount,
Credit Amount, Additional-
Currency Amount, Add.-
Currency Debit Amount,
Add.-Currency Credit
Amount

YES

YES Document No., Posting Date YES

YES Transaction No. YES

YES Close Income Statement Dim.
ID

YES
487

Chapter 24. SumIndexFields
This table has two SIFT keys because only two keys have SumIndexFields associated
with them.

The SIFT key that is composed of the G/L Account No., Posting Date fields has the
Key Index value 0. Therefore, the SIFT table with the name CRONUS International
Ltd_$17$0 is created for it on SQL Server.

The SIFT key that is composed of the G/L Account No., Business Unit Code, Global
Dimension 1 Code, Global Dimension 2 Code, Close Income Statement Dim. ID,
Posting Date fields has the Key Index value 1. Therefore, the SIFT table with the name
CRONUS International Ltd_$17$1 is created for it on SQL Server.

The column layout of the SIFT tables is based on the layout of the SIFT key along with
the SumIndexFields that are associated with this SIFT key. But the first column in every
SIFT table is always named "bucket" and contains the value of the bucket or SIFT level
for the precalculated sums that are stored in the table. Buckets are discussed in the
following section.

After the bucket column, comes a set of columns with names that start with the letter
"f". These are also known as f- or key-columns. Each of these columns represents one
field of the SIFT key. The name of these columns has the following format: f<Field No.>,
where Field No. is the integer value of the Field No. property of the represented SIFT
key field. For example, column f3 in CRONUS International Ltd_$17$1 represents the
G/L Account No. field (it is field number 3 in the base table G/L Entry) of the SIFT key
with Key Index = 1 (see the previous example).

And finally, there is a group of columns with names that start with the letter "s"
followed by numbers. These are also known as s-columns. These columns represent
every SumIndexField that is associated with the SIFT key. The name of these columns
has the following format: s<Field No.>. Field No. is the integer value of the Field No.
property of the represented SumIndexField. The precalculated totals of values for the
corresponding SumIndexFields are stored in these fields of the SIFT table. For example,
the first s-column in CRONUS International Ltd_$17$1 is s17. This column represents
the Amount SumIndexField (it is field number 17 in the G/L Entry table) because the
Amount field is associated with the SIFT key.

Buckets and SIFT Levels
Understanding the relationship between buckets and SIFT levels is crucial to
understanding the way that SIFT is implemented in the SQL Server Option for Dynamics
NAV. The precalculated totals or sums for each SumIndexField column are stored in
buckets in SIFT tables. The buckets correspond to the SIFT levels that are maintained
and each SIFT level can generate many records that are stored with the same bucket
number in the SIFT tables on SQL Server. The higher the bucket number the more
detailed the SIFT level. The buckets and their corresponding SIFT levels can also be seen
488

24.2 SIFT and the SQL Server Option for Dynamics NAV
from within Dynamics NAV, even though they only exist in the SQL Server tables that
are created to support SIFT:

The precalculated totals from the different buckets are retrieved and aggregated to
generate the sums or totals that are stored in the SumIndexFields. For information
about how to open this window, see "Configuring the SIFT Levels" on page 500.

What are SIFT Levels?
As mentioned earlier, every row in a SIFT table stores precalculated totals in s-fields.
These totals are based on the values in the corresponding SumIndexField column in the
base table. The f-fields in each record in a SIFT table contain the conditions which are
constant for every row in the base table, and which contribute to the value of the total
that is stored in that record in the SIFT table. In other words, a SIFT level is the set of
values that are stored in the key fields that are used to generate the stored total of the
SumIndexField values. A SIFT level or bucket can be regarded as a hash value or a key
value that uniquely specifies the totals that are stored in it. A bucket is similar to the
concept of a cube that is used in OLAP systems.

Every bucket in a SIFT table has a bucket number that corresponds to its SIFT level. The
SIFT level’s bucket number is stored in the bucket field of each record in the SIFT table.
Also, records in SIFT tables are sorted according to their bucket numbers (because the
bucket field is part of the primary clustered index of every SIFT table).

Note

The records that store the grand totals of SumIndexFields have bucket number 0
corresponding to SIFT level 0. Although only one record with SIFT level 0 can exist
(because only one grand total value can exist for each SumIndexField), this SIFT level is
not maintained as a default. However, you can activate this SIFT level if you want to. It
is important to remember that this grand total must be updated every time that a
record is added or altered in the base table. This can have a bad affect on performance
because each user must wait until the grand total has been updated by the previous
operation before their update can be performed.

Furthermore, the most detailed bucket level is not maintained as a default value. This
bucket level can also be activated. For information about maintaining bucket levels, see
"SIFT and Performance" on page 502.

SIFT level 1 means that only one field (the first one) from the SIFT key makes up the
buckets at this level. In other words, the number of records in the SIFT table that have
489

Chapter 24. SumIndexFields
SIFT level 1 is equal to the number of different values that are stored in the first field in
the SIFT key in the base table. The number of records in the SIFT table that have SIFT
level 2 is defined by the number of different combinations of values that are stored in
the first and second fields of the SIFT key in the base table, and so on.

Here is a simple example:

Base Table:

Base Table Keys:

This table has one SIFT key that has two SumIndexFields associated with it.

According to the data stored in the base table the following buckets and predefined
sums will be calculated and stored in the SIFT Table:

SIFT Table:

As you can see, the highest bucket number in this SIFT table is 2 (in the example it is
the number of fields, included in the SIFT key) and there are therefore only 2 SIFT levels
maintained in this table. The number of records at each SIFT level is determined by the

Rec. No. Item No. Location Code Amount Qty.

1 ITM001 BLUE 100 10

2 ITM002 BLUE 400 20

3 ITM001 YELLOW 450 30

4 ITM003 YELLOW 1200 40

5 ITM001 RED 1000 50

Enabled Fields SumIndexFields MaintainSIFTIndex

YES Rec. No. YES

YES Item No., Location Code Amount, Qty. YES

bucket f2 f3 s4 s5

1 ITM001 1550 90 SIFT level 0 is not maintained as a
default.
The number of records at SIFT level 1
depends on the number of different
values that are stored in the Item No.
column (alias f2) of the base table.

1 ITM002 400 20

1 ITM003 1200 40

2 ITM001 BLUE 100 10 The number of records at SIFT level 2
depends on the number of different
possible combinations that can be
composed from the values stored in the
Item No. (alias f2) and Location Code
(alias f3) columns of the base table.

2 ITM001 RED 1000 50

2 ITM001 YELLOW 450 30

2 ITM002 BLUE 400 20

2 ITM003 YELLOW 1200 40
490

24.2 SIFT and the SQL Server Option for Dynamics NAV
data stored in the base table. On each SIFT level this number can be calculated as the
number of possible combinations that can be made from the values in the key columns
that compose this bucket. Finally, the s-fields of every record contain the precalculated
sums of the values stored in the SumIndexFields Amount and Qty. The corresponding
fields in the SIFT table are s4 and s5. These sums are calculated according to the SIFT
level that they belong to.

Therefore, the s4 and s5 fields of the record with SIFT level 1 where f2 (Item No.) is
ITM001 contain the totals of the values stored in the Amount and Qty. fields in the
base table where the Item No. is ITM001.

Base Table:

SIFT Table:

These precalculated totals will be used to produce the sums that are requested in the
following C/AL code:

SETCURRENTKEY("Item No.");

SETRANGE("Item No.",'ITM001');
CALCSUMS("Amount","Qty.");

SIFT Levels and Fields of the Date Data Type
From the previous example, it might be assumed that the maximum value of a SIFT
level is always defined by the number of fields included in the SIFT key. However, this is
not always the case. If one or more fields of the Date data type are included in the SIFT
key, the number of SIFT levels increases. This is because each field of the Date data type
in the SIFT key causes not one but three SIFT levels to be created. The system was
designed this way to answer requests for totals that are based on dates.

Instead of having one SIFT level per date, there is one per year, one per month of the
year and one per day of the month of the year. This allows us to calculate totals that are
based on dates more efficiently.

Rec. No. Item No. Location
Code

Amount Qty.

1 ITM001 BLUE 100 10 The records from the base table that
contribute to the sums stored for
SIFT level 1 in the SIFT table. This
record in the SIFT table has bucket
number 1 and Item No. ITM001.

3 ITM001 YELLOW 450 30

5 ITM001 RED 1000 50

bucket f2 f3 s4 s5

1 ITM001 1550 90 The record in the SIFT table that stores
precalculated sums for this SIFT level.
This SIFT level is composed of a single
column f2 (Item No.).
(1550 = 100 + 450 + 1000, 90 = 10 + 30
+ 50)
491

Chapter 24. SumIndexFields
In the following example, the base table contains a new column of the Date data type,
called Invoice Date. This field is included in the SIFT key Item No., Location Code,
Invoice Date and two SumIndexFields Amount and Qty. are associated with this key.
Let's take a look at the SIFT table and analyze the bucket structure that is created for
this SIFT key.

Base Table:

Base Table Keys:

SIFT Table:

Rec. No. Item No. Location Code Invoice Date Amount Qty.

1 ITM001 BLUE 12 Jan 2000 100 10

2 ITM002 BLUE 23 Feb 2001 400 20

3 ITM001 YELLOW 17 Mar 2001 450 30

4 ITM003 YELLOW 19 Mar 2001 1200 40

5 ITM001 RED 28 Mar 2001 1000 50

Enabled Fields SumIndexFields MaintainSIFTIndex

YES Rec. No. YES

YES Item No., Location Code, Invoice
Date

Amount, Qty. YES

Bucket f2 f3 f4 s5 s6

1 ITM001 01 Jan 1753 1550 90 SIFT level 0 is not
supported as a
default.

The date 01 Jan 1753
is interpreted as an
undefined date (’0D’)
on SQL Server.

1 ITM002 01 Jan 1753 400 20

1 ITM003 01 Jan 1753 1200 40

2 ITM001 BLUE 01 Jan 1753 100 10

2 ITM001 RED 01 Jan 1753 1000 50

2 ITM001 YELLOW 01 Jan 1753 450 30

2 ITM002 BLUE 01 Jan 1753 400 20
492

24.2 SIFT and the SQL Server Option for Dynamics NAV
As you can see, the number of records in the SIFT table has increased dramatically. The
upper part of the SIFT table that contains the records at SIFT levels 1 and 2 has exactly
the same layout as it had in the first example (if you don't count the new column – f4).
All the changes are visible at the bottom of the SIFT table. Three more bucket numbers
corresponding to 3 more SIFT levels have been created – 3, 4 and 5.

To generate the records at SIFT level 3 in the SIFT table, all the values stored in the
Invoice Date column of the base table are converted to the "first-day-of-year" date.
This date has the format: 01 Jan XXXX, where XXXX is the year of the date that is
converted. For example, 17 Mar 2001 is converted to 01 Jan 2001 and 12 Jan 2000 is
converted to 01 Jan 2000. After this conversion the records at SIFT level 3 are
generated. They contain totals for the SumIndexFields for all the possible combinations
of Item No., Location Code and the converted dates from the Invoice Date column. In
other words, SIFT level 3 represents the Item No., Location Code, Invoice YEAR(Date)
buckets.

To generate the records at SIFT level 4 in the SIFT table, all the values stored in the
Invoice Date column of the base table are converted to the "first-day-of-month-of-
year" date. This date has the format: 01 Mmm XXXX, where Mmm is the month and
XXXX is the year of the date that is converted. 17 Mar 2001 is converted to 01 Mar 2001
and 12 Jan 2000 is converted to 01 Jan 2000. After this conversion the records at SIFT
level 4 are generated. They contain totals for the SumIndexFields for all the possible
combinations of Item No., Location Code and the converted dates from the Invoice

2 ITM003 YELLOW 01 Jan 1753 1200 40

3 ITM001 BLUE 01 Jan 2000 100 10

3 ITM001 RED 01 Jan 2001 1000 50

3 ITM001 YELLOW 01 Jan 2001 450 30

3 ITM002 BLUE 01 Jan 2001 400 20

3 ITM003 YELLOW 01 Jan 2001 1200 40

4 ITM001 BLUE 01 Jan 2000 100 10

4 ITM001 RED 01 Mar 2001 1000 50

4 ITM001 YELLOW 01 Mar 2001 450 30

4 ITM002 BLUE 01 Feb 2001 400 20

4 ITM003 YELLOW 01 Mar 2001 1200 40

5 ITM001 BLUE 12 Jan 2000 100 10

5 ITM001 RED 28 Mar 2001 1000 50

5 ITM001 YELLOW 17 Mar 2001 450 30

5 ITM002 BLUE 23 Feb 2001 400 20

5 ITM003 YELLOW 19 Mar 2001 1200 40

Bucket f2 f3 f4 s5 s6
493

Chapter 24. SumIndexFields
Date column. In other words, SIFT level 4 represents the Item No., Location Code,
Invoice MONTH-OF-YEAR(Date) buckets.

Finally, to generate the records at SIFT level 5 in the SIFT table, all the values stored in
the Invoice Date column of the base table are used as they are, without any
conversions. The records at SIFT level 5 contain totals for the SumIndexFields for all the
possible combinations of Item No., Location Code and the dates stored in Invoice Date
column. In the other words, SIFT level 5 represents the Item No., Location Code, Invoice
DATE(Date) buckets.

This configuration of SIFT levels makes calculating totals based on dates faster. If you
want to calculate the total amount of the item ITM001 that are stored in the BLUE
location and have been invoiced during the year 2000, this sum is precalculated and
stored in the s5 field of the following record in the SIFT table:

These precalculated totals will be used to produce the sums that are requested in the
following C/AL code:

SETCURRENTKEY("Item No.","Location Code","Invoice Date");

SETRANGE("Item No.",'ITM001');

SETRANGE("Location Code",'BLUE');
SETRANGE("Invoice Date",010100D,CLOSINGDATE(311200D));

CALCSUMS("Amount","Qty");

A more advanced request wants to calculate the total amount of the item ITM001 that
is stored in the BLUE location and were invoiced between 07 Mar 1998 and 14 Jun
2001. The algorithm used to make this calculation is more complicated and includes
several steps. However, the sum will still be calculated more efficiently in this way than
by directly searching the base table for the relevant records and aggregating them,
especially when the number of records is greater than it is in this simple example.

Generally, calculating sums using SIFT tables gets more efficient the greater the
amount of records that fall within the parameters specified in the filter.

SIFT Levels and Fields of the DateTime Data Type
SIFT keys can also contain fields of the DateTime data type. Fields of DateTime data
type can generate up to seven SIFT levels; one to support each level of detail that is
contained in a datetime field: year, month, day, hour, minute, second and millisecond.

However, Dynamics NAV only supports three of these levels by default: year, month
and day.

Furthermore, we recommend that if a SIFT key contains a field of the DateTime data
type, this is the last field in the SIFT key. If another field comes after a datetime field in
a SIFT key, the most detailed SIFT level of the datetime field is automatically
maintained as part of the SIFT level that is created for the last field in the SIFT key. The
most detailed level is milliseconds, and this means that the SIFT table will contain a
bucket for each millisecond. The SIFT table will therefore contain as many buckets as
there are records in the base table because it is almost impossible to enter two records
into the base table at the same millisecond. There is therefore no point in maintaining

Bucket f2 f3 f4 s5 s6

3 ITM001 BLUE 01 Jan 2000 100 10
494

24.2 SIFT and the SQL Server Option for Dynamics NAV
this SIFT level as no performance benefit can be gained from calculating sums based on
a SIFT table that contains as many buckets as there are records in the base table.

Important

If a field SIFT key contains a field of the DateTime data type, this field must be the last
field in the SIFT key.

SIFT Tables

Indexes It is important to know that each SIFT table has its own primary clustered index. This
index is composed of the bucket column and all the f-columns in the SIFT table. The
name of this index has the following format: <SIFT Table Name>_idx.

For example, one of the SIFT tables supported by table 17, G/L Entry is CRONUS
International Ltd_$17$1 and its primary clustered index is called CRONUS International
Ltd$17$1_idx. The fields, included in this index are: bucket, f3, f45, f23, f24, f71 and f4.

Sometimes you can improve performance by creating non-clustered secondary index
for a SIFT table. The name of this index has the following format:<SIFT Table
Name>_hlp_idx. A non-clustered secondary index always consists of a single field.

For example, the SIFT table CRONUS International Ltd$17$1 has the non-clustered
secondary index called CRONUS International Ltd$17$1_hlp_idx and this index consists
of field f4.

Layout estimation Before you create a SIFT key, you might want to estimate the layout of the SIFT table
that will be created and maintained to support this key. This will help you understand
the amount of support that the new SIFT key will require.

Extended key However, before you can estimate the layout of a SIFT table you must understand the
concept of the extended key. It is a standard feature of database design to add all the
fields in the primary key to the secondary keys to facilitate sorting.
495

Chapter 24. SumIndexFields
This extended key is not visible in Dynamics NAV but can be seen in SQL Server:

As you can see from this table, the field in the primary key has been added to all the
secondary keys – compare it to the table on page 487. Furthermore, the fields in the
primary key are only added to the secondary keys if they are not already part of the
secondary key.

The following rules will help you calculate the number of columns and SIFT levels that
will be supported by SIFT during the SIFT key design phase:

1 The first column in a SIFT table is always the bucket column. This is where the bucket
number is stored.

2 The f-columns are next. To estimate the number of f-columns, use the following
formula:

If the last field in the SIFT key is of the Date data type, the number of f-columns in
the SIFT table is equal to the number of fields in the SIFT key.

If the last field of the SIFT key is of any other data type, the number of f-columns in
the SIFT table is equal to the number of fields in the SIFT key minus 1 (the f-field
representing the last field in this kind of SIFT key will not appear in the SIFT table).

A SIFT key based on a non-primary key in the Base table has a composite layout. This
means that after the user has included the fields in the key, all the fields in the
primary key that are still not a part of this SIFT key are also included in it. Here is an
example:

Table 17, G/L Entry - Keys (fragment):

Index Clustered Index_Keys

Cronus International
Ltd_$G/L Entry$0

Entry No.

$1 No G/L Account No., Posting Date, Entry No.

$2 No G/L Account No., Business Unit Code, Global Dimension
1 Code, Global Dimension 2 Code, Close Income
Statement Dim. ID, Posting Date, Entry No.

$3 No Document No., Posting Date, Entry No.

$4 No Transaction No., Entry No.

$5 No Close Income Statement Dim. ID, Entry No.

Enabled Key SumIndexFields

YES Entry No.

YES G/L Account No.,
Posting Date

Amount, Debit Amount, Credit Amount, Additional-
Currency Amount, Add.-Currency Debit Amount, Add.-
Currency Credit Amount
496

24.2 SIFT and the SQL Server Option for Dynamics NAV
These are the first two keys in the G/L Entry table. The first key is the primary key
and consists of a single field: Entry No. The second key is one of the secondary keys
in this table and it has SumIndexFields associated with it. This secondary key consists
of two fields: G/L Account No., Posting Date.

Entry No. is the field in the primary key and is added at the end of every secondary
key if the user hasn't already added it to this key. In other words, all the fields in the
primary key are always included in the SIFT key. So the extended secondary key
consists of three fields: G/L Account No., Posting Date and Entry No.

Therefore, the extended SIFT key also consists of three fields: G/L Account No.,
Posting Date and Entry No. As stated previously – all the fields in the primary key
are always included in the SIFT key.

The last field in this SIFT Key is not of the Date data type (and the corresponding f-
columns are not included in the SIFT table). That is why the number of f-columns in
the SIFT table in this example is equal to the number of fields in the SIFT key minus
1. The SIFT Table CRONUS International Ltd_$17$0 has two f-columns f3 and f4,
corresponding to the G/L Account No. and Posting Date fields in the base table,
respectively.

3 Finally, in every SIFT table there are the s-columns or sum-columns. The number of
s-columns is always equal to the number of SumIndexFields, associated with the SIFT
key. In this example six SumIndexFields are associated with the SIFT key: Amount,
Debit Amount, Credit Amount, Additional-Currency Amount, Add.-Currency
Debit Amount and Add.-Currency Credit Amount. Therefore, the SIFT table
contains six s-columns named s17, s53, s54, s68, s69 and s70 after each of the
SumIndexFields.

The number of SIFT levels that are supported can be calculated by analyzing the data
types of the fields that are included in the SIFT key:

• Every field of the Date and DateTime data types generate three SIFT levels.
• Key fields of any other data type generate only one SIFT level each.
• To optimize performance, SIFT level 0 (grand total sums) and the last SIFT level (the

so-called most detailed bucket level) are not included in SIFT tables.
• All the fields in the primary key that are not specified as part of the SIFT key are also

included in the SIFT key.

Therefore, the number of SIFT levels that are supported can be calculated as:

• the number of fields of the Date and DateTime data type that exist in SIFT key
multiplied by three, plus the number of fields of any other data type in the SIFT Key
minus one.

Furthermore, if the first field in the SIFT key is a field of the Boolean or Option data
type, this field does not generate a SIFT level. Therefore, the calculated number of SIFT
levels should be reduced by 1. In this case the first SIFT level in the table will be 2
(because SIFT level 0 is not used and the first SIFT level is ignored because the first field
in the SIFT key is Boolean). Therefore, all the records belonging to the first SIFT level in
the SIFT table will have value 2 in the bucket field. If any of the other fields in the SIFT
key is a field of the Boolean data type, it does produce a SIFT level.
497

Chapter 24. SumIndexFields
Let's take another look at our example:

It has a SIFT key that is composed of three fields: G/L Account No., Posting Date and
Entry No. There is one field of the Date data type in this key and there are two other
fields. Therefore, the number of different SIFT levels in the SIFT table CRONUS
International Ltd_$17$0 is:

1x3+2-1=4.

In this table, the first SIFT level is 1 because the first field in the key is of the Code data
type (neither Option nor Boolean). You can easily check these calculations by using
tools like SQL Query Analyzer or SQL Server Enterprise Manager to inspect the
CRONUS International Ltd_$17$0 table in your database.

Updating the Base Table
Every time you insert, delete or update data in a base table that can change the
precalculated sums that are stored in the SIFT tables for this particular base table, all of
the affected SIFT tables must also be updated. The SIFT trigger manages this procedure
automatically. However, the important thing to understand is that every single record
that is inserted into a base table can cause hundreds of records to be updated in the
SIFT tables.

The following example illustrates how this works. The base table contains the following
records:

If you, for example, insert the following record into the base table:

The SIFT trigger will update the following rows in the SIFT table:

At SIFT level 1, one record is updated:

Rec. No. Item No. Location Code Invoice Date Amount Qty.

1 ITM001 BLUE 12 Jan 2000 100 10

2 ITM002 BLUE 23 Feb 2001 400 20

3 ITM001 YELLOW 17 Mar 2001 450 30

4 ITM003 YELLOW 19 Mar 2001 1200 40

5 ITM001 RED 28 Mar 2001 1000 50

6 ITM002 BLUE 12 Feb 2001 2000 80

bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002
are affected by adding the
new record.

1 ITM002 2400 100

Updated values: (400) (20)
498

24.2 SIFT and the SQL Server Option for Dynamics NAV
At SIFT level 2, one record is updated:

At SIFT level 3, one record is updated:

At SIFT level 4, one record is updated:

At SIFT level 5, one new record is inserted:

bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location are
affected by adding the new
record.

2 ITM002 BLUE 2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location, posted in
the year 2001 are affected by
adding the new record.

3 ITM002 BLUE 01 Jan 2001 2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location, posted in
February 2001 are affected
by adding the new record.

4 ITM002 BLUE 01 Feb
2001

2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

5 ITM001 YELLOW 17 Mar
2001

2400 30

5 ITM002 YELLOW 12 Feb
2001

2000 80 This record is inserted at
SIFT level 5.

5 ITM002 BLUE 23 Feb
2001

400 20

5 ITM003 YELLOW 19 Mar
2001

1200 40
499

Chapter 24. SumIndexFields
The SIFT trigger automatically performs all these modifications when the record is
inserted into the base table. As you can see, inserting this single record in the base
table causes modifications to be made to multiple records in the SIFT table. In this
example only a few records were affected by the changes to the base table.

Some of the tables in Dynamics NAV contain many large SIFT keys. This means that
updating the SIFT tables can take a long time. This decrease in performance when
updating the base tables is the price that must be paid if the system is to contain
SumIndexFields that facilitate rapid calculations. That is why it is crucial that you choose
the right configuration of table keys when you are designing a table.

Keeping your keys as short and as selective as possible can dramatically reduce the
complexity of the layout of the SIFT tables and reduce the time required by the SIFT
trigger to update the SIFT tables. Keeping the primary key of the table as short as
possible is particularly important because all of the fields in the primary key are always
included in every SIFT key that you create in that table.

Deleting Records from the Base Table
When you delete a record from a base table, the SIFT table is updated in the normal
way and all of the aggregated totals are updated. However, the record is not deleted
from the SIFT table; its corresponding totals in the SIFT table are set to zero. The entries
in the SIFT table are not removed because there is a performance benefit to be gained
for future updates by keeping them.

Configuring the SIFT Levels
As stated earlier, both SIFT level 0 (the Grand Total) and the most detailed SIFT level are
not maintained as a default. However, you can decide to maintain these SIFT levels if
you need them. Furthermore, you can also decide not to maintain any of the other SIFT
levels if you do not need them.

In the following example the MaintainSIFTIndex property of the key is set to Yes,
indicating that SIFT structures necessary for maintaining the SumIndexFields associated
with this key have been created on SQL Server.

If you no longer want to maintain these SIFT structures, you must set the
MaintainSIFTIndex property for this key to No. For more information about the factors
that must be taken into consideration before deciding whether or not to maintain
these structures, see page 502.

To change the SIFT levels that are maintained:

1 Open the Object Designer and click Table.

2 Select the table that contains the SIFT indexes that you want to modify and click
Design. In this example, use table 17, G/L Entry.
500

24.2 SIFT and the SQL Server Option for Dynamics NAV
3 Click View, Keys to open the Keys window for this table:

4 Select the key that you want to modify and click View, Properties. The Key –
Properties window for this key appears:

5 In the Value field of the SIFTLevelsToMaintain property, use the AssistButton k to
open the SIFT Level List window.

This window lists all the SIFT levels and their components that have been created to
support the SumIndexFields associated with this key.

6 Enter or remove a check mark from the Maintain field to specify whether or not you
want to maintain a particular SIFT level.

Important

Adding or removing a SIFT level will mean that parts of the corresponding SIFT table
will have to be rebuilt. This could be time-consuming.
501

Chapter 24. SumIndexFields
7 If the SIFT Level field contains so much information that it cannot be displayed in
the window, use the AssistButtonp in the SIFT Level field to open the SIFT Level
Viewer window.

This window lists all of the components that make up this SIFT level.

SIFT and Performance
As explained earlier, every time you update a key or a SumIndexField in a base table all
of the SIFT tables that are associated with the base table must also be updated. This
means that the number of SIFT tables that you create, as well as the number of SIFT
levels that you maintain, affects performance.

If you have a very dynamic base table that constantly has records inserted, modified
and deleted, the SIFT tables that are associated with it will constantly have to be
updated.

The SIFT tables can get very large, both because of the new records that are entered
and because the records that are deleted from the base table are not removed from
the SIFT tables. This can also badly affect performance, particularly when the SIFT tables
are queried to calculate sums.

Factors to consider The factors that you must take into consideration when you deal with any performance
problems that arise include:

• Have you designed your SIFT indexes optimally?

Supporting too many SIFT indexes will affect performance.

Having unnecessary date fields in the SIFT indexes of the base table will affect
performance because they create three times as many entries as an ordinary field.

Supporting too many fields in the SIFT indexes will also affect performance.

The fields in the SIFT index that are used most regularly in queries must be
positioned to the left in the SIFT index. As a general rule, the field that contains the
greatest number of unique values must be placed on the left with the field that
contains the second greatest number of unique values on its right and so on. Integer
fields generally contain the greatest number of unique values and Option fields
contain a relatively small number of values.

• Are there too many SIFT levels?
502

24.2 SIFT and the SQL Server Option for Dynamics NAV
Maintaining the Grand Total (SIFT level 0) can affect multiuser performance and lead
to concurrency problems because this total must be updated every time a record is
entered or modified in the base table.

Maintaining the most detailed SIFT level is not recommended because you will not
need totals that are this detailed often enough to justify the cost to performance.

You must regularly use the totals generated by the SIFT levels that are maintained
for a particular SIFT index to justify the cost in performance of maintaining these
SIFT levels. If the filtered set of records that the totals are based on is large, it is
generally worthwhile maintaining the SIFT structures. If the filtered set of records
that the totals are based on is small, do not maintain the SIFT structures.

Consider the costs and the benefits of maintaining SIFT tables and SIFT levels:

These graphs illustrate some of the factors that must be taken into consideration
before deciding to maintain the SIFT structures and determining how many SIFT
levels to maintain.

• You can prevent the SIFT tables from being updated by setting the
MaintainSIFTIndex property of the index in the base table to No. This means that you
no longer benefit from SIFT's ability to calculate sums quickly. However, the SIFT
functionality is still available.

• You can reduce the cost of updating the SIFT table by not maintaining all of the SIFT
levels that are generated by a particular index. This means that some totals are not
readily available and will have to be calculated when you need them.

• You can reduce the cost of updating and limit the size of the SIFT table by
optimizing it and removing the records that contain zero values in all the
SumIndexFields.

• If the base table doesn’t grow or only grows slowly, there is no need to set the
MaintainSIFTIndex property of any indexes that contain SumIndexFields to Yes. If the
base table does grow, you ought to set the MaintainSIFTIndex property of any
indexes that contain SumIndexFields to Yes.

Cost Benefit

Updates to the SIFT tables Fast calculation of sums

Potential locking conflicts

No. of records No. of
updates toin filter
SIFT tables

Maintain

Benefit

Benefit

SIFT structures

when
calculating sums

Maintain
SIFT structures
503

Chapter 24. SumIndexFields
Important

It is important that you remember to carry out some tests every time you make any
changes to the SIFT structures in Dynamics NAV. You must make sure that the changes
that you have made do not cause problems in any other areas of the application. You
must also ensure that your changes do not have a negative affect on performance.

Note

If you set the MaintainSIFTIndex property to No, you should not set the
MaintainSQLIndex to No.

Optimizing SIFT Tables
If one of your SIFT tables becomes very large you might want to determine whether or
not it should be optimized.

Run a SQL query on the SIFT table to find out how many records there are with zero
values in all the sum fields in the table. If there are a large number of these records, you
can initiate the optimization process in Dynamics NAV and remove them.

The optimization process removes any entries that contain zero values in all numeric
fields from each SIFT table. The removal of these redundant entries frees up space and
makes updating and summing SIFT information more efficient.

To initiate the optimization process click File, Database, Information, Tables, Optimize.

For more information about optimizing SIFT tables, see the chapter "Working with
Databases" in the manual Installation & System Management: SQL Server Option for
Microsoft Dynamics NAV.
504

Chapter 25

Type Conversion

This appendix describes all possible type conversions in
C/AL expressions. The appendix is divided into the following
sections:

· Type Conversion in Expressions

· Type Conversion Mechanisms

Chapter 25. Type Conversion
25.1 Type Conversion in Expressions

Consider the following statements:

CharVar := 15; // A char variable
integerVar := 56000; // An integer variable

Sum := CharVar + integerVar;

The last statement involves one or two type conversions. The right-hand side of the
statement involves the evaluation of the expression CharVar + integerVar (char +
integer). In order to evaluate this expression, the first operand (CharVar) will have to be
converted from char to integer. The addition operator will then return an integer result.
But if the type of the left-hand side variable has been declared as, for example, decimal,
the result must be converted from integer to decimal before its value can be assigned
to Sum (this kind of conversion is discussed in "Assignment and Type Conversion" on
page 308.)

This appendix describes the type conversions which sometimes take place when
expressions are evaluated. First, some general rules:

• When asked to evaluate an expression of mixed data types, the system will (if
possible) always convert at least one of the operands to a more general data type.

• The data types in the two main groups, numbers and strings, can be ranked from
"most general" to "least general."

• The most general data types include all the possible values from the less general
data types: a decimal is more general than an integer, which again is more general
than a char.

• Type conversion can take place in some cases even though two operands have the
same type.

Strings

code

text

Numbers

integer, option

char

decimal

decimal is the most
general numeric
data type

char is the least
general numeric
data type

The text data type is
more general than
the code data type.
506

25.1 Type Conversion in Expressions
These rules can be illustrated by some examples.

Example 1

Evaluation of a numeric expression:

integer + decimal

This expression contains two sub-expressions of different data types. Before it can add these two
sub-expressions, the system must convert the left-hand side sub-expression to decimal:

decimal + decimal

When the left-hand side sub-expression has been converted, the expression can be evaluated, and
the resulting data type will be decimal:

decimal + decimal = decimal

Example 2

Evaluation of a string expression:

text + code

This expression contains two sub-expressions that must be concatenated. To do this, the system
must convert the sub-expression of the least general data type (code) to the most general data type
(text).

text + text

When the right-hand side argument has been converted, the expression can be evaluated, and the
resulting data type will be text.

text + text = text
507

Chapter 25. Type Conversion
25.2 Type Conversion Mechanisms

This section discusses the type conversion mechanisms for the C/AL operators in more
depth. The starting point is to divide the operators into some main categories:

• Relational operators
• Logical operators
• Arithmetic operators

The following subsections discuss the properties of operators in C/AL: for each
category of operators, there are descriptions of the valid data types for the arguments
and the data types that result when expressions are evaluated.

The relational operators will be treated first, as they are common to most of the C/AL
data types.

Relational Operators
The relational operators are used to compare expressions. The following table defines
the evaluation rules for relational operators. The rules assume that the data types of the
expressions can be compared. Refer to the next section "Valid Uses of Relational
Operators" for a complete overview of comparable data types.

Note

When using relational operators, upper and lower case letters in strings are significant.
Furthermore, the comparison is based on the built-in character comparison table of the
system, that is, not by comparing "true" ASCII characters.

Valid Uses of Relational Operators
The following table describes the valid uses of the relational operators and the data
types that result when expressions are evaluated. The invalid combinations of types for
relational operators are indicated by a dash. All relational operators are binary infix
operators; that is, they take a left and a right argument and are placed between the
arguments.

The rows in the table show the type of the left argument and the columns show the
type of the right argument. The cells show the resulting data type.

Operator Operator Name Expression Resulting Data Type

> Greater than Expr > Expr boolean

< Less than Expr < Expr boolean

<= Less than or equal Expr >= Expr boolean

<> Not equal to Expr <> Expr boolean

= Equal to Expr = Expr boolean

IN In range Expr IN [Valueset] boolean
508

25.2 Type Conversion Mechanisms
From the table you can see that a valid use of the relational operators is, for example,
text compared with text or code, while boolean cannot be compared with anything
other than boolean, and so forth.

Boolean (Logical) Operators
The logical operators can only be used with arguments that can be evaluated to
boolean.

As this table shows, the NOT operator is a unary prefix operator. This means that it
takes only one argument and is placed in front of the argument. The AND, OR and XOR
operators, on the other hand, are binary infix operators; that is, they take two
arguments and are placed between the corresponding arguments.

Arithmetic Operators
Here are some examples of how to use the type conversion rules for arithmetic
operators. The examples illustrate how the operators are supposed to be used and the
effect of the type conversion made automatically by the C/AL compiler. The examples
have been divided into groups corresponding to the data types in C/AL.

For a full description of the type conversion rules in C/AL, refer to the tables in the
section "Complete Overview of Type Conversion Rules" on page 511, which provide a
full description of all the possible uses of C/AL operators and the resulting data types.

Relational
Operators

bo
ol

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

ti
m

e

te
xt

co
de

bool bool - - - - - - - -

char - bool bool bool bool - - - -

option - bool bool bool bool - - - -

integer - bool bool bool bool - - - -

decimal - bool bool bool bool - - - -

date - - - - - bool - - -

time - - - - - - bool - -

text - - - - - - - bool bool

code - - - - - - - bool bool

Operator Name Expression Resulting Data Type

NOT Logical negation NOT bool bool

AND Logical and bool AND bool bool

OR Logical or bool OR bool bool

XOR Exclusive logical or bool XOR bool bool
509

Chapter 25. Type Conversion
Example

This table illustrates type conversion in integer operator expressions

Note that the same rules apply to option operator expressions as well.

Example

This table illustrates type conversion in decimal operator expressions:

Example

This table illustrates type conversion in date operator expressions:

In the "date addition" and "date subtraction" examples, a runtime error will occur if date is a closing
date or if date is undefined (0D).

Operator Name Expression Resulting Data Type

+ Unary plus + integer integer

- Unary minus - integer integer

+ Addition integer + integer integer

- Subtraction integer - integer integer

* Multiplication integer * integer integer

/ Division integer / integer decimal

DIV Integer division integer DIV integer integer

MOD Modulus integer MOD integer integer

Operator Name Expression Resulting Data Type

+ Unary plus + decimal decimal

- Unary minus - decimal decimal

+ Addition decimal + decimal decimal

- Subtraction decimal - decimal decimal

* Multiplication decimal * decimal decimal

/ Division decimal / decimal decimal

DIV Integer Division decimal DIV decimal decimal

MOD Modulus decimal MOD decimal decimal

Operator Name Expression Resulting Data Type

+ date addition date + Number date

- date subtraction date - Number date

- date difference date - date integer
510

25.2 Type Conversion Mechanisms
Example

This table illustrates type conversion in time operator expressions:

The time unit is milliseconds. If time is undefined (0T), a runtime error will occur.

Example

This table illustrates type conversion in text and code (String) operator expressions:

Complete Overview of Type Conversion Rules
The following tables provide a complete overview of type conversion rules for the
arithmetic operators.

The Unary Arithmetic Operators
The unary arithmetic operators in C/AL are so-called prefix operators, whose syntax is:

PrefixExpression = PrefixOperator Expression

This table shows the data types for which the unary operators in C/AL are defined, and
the resulting data types.

The Binary Arithmetic Operators
This table shows the data types for which the binary arithmetic operators are defined.
The binary arithmetic operators in C/AL are all infix operators, that is:

InfixExpression = LeftExpression InfixOperator RightExpression

Operator Name Expression Resulting Data Type

+ time addition time + integer time

- time difference time - time integer

Operator Name Expression Resulting Data Type

+ Concatenation text + text text

+ Concatenation text + code text

+ Concatenation code + text text

+ Concatenation code + code code

Unary Operator option integer decimal

+ integer integer decimal

- integer integer decimal

boolean char option integer decimal date time text code

Operator

+ j c c c c c c c c

- j c c c c c c j j
511

Chapter 25. Type Conversion
c Yes, the operator can take at least one operand (left, right or both) of the given type.
j No, the operator cannot be used with the given type.

The following tables define the valid uses of the binary arithmetic operators, and the
resulting data types.

Definition of Type Conversion Rules for the "+" Operator

(A) the operation is not defined for the date 0D.

(B) the operation is not defined for the time 0T.

(C) Overflow may occur.

(D) the operation is not defined if decimal has a fractional part.

* j c c c c j j j j

/ j c c c c j j j j

DIV j c c c c j j j j

MOD j c c c c j j j j

boolean char option integer decimal date time text code

The "+"
operator

bo
ol

ea
n

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

ti
m

e

te
xt

co
de

boolean - - - - - - - - -

char - integer integer (C) integer (C) decimal (C) - - - -

option - integer (C) integer (C) integer (C) decimal (C) - - - -

integer - integer (C) integer (C) integer (C) decimal (C) - - - -

decimal - decimal (C) decimal (C) decimal (C) decimal (C) - - - -

date - date(A) (C) date (A) (C) date(A) (C) date(A) (C) (D) - - - -

time - time(B) (C) time(B) (C) time(B) (C) time(B) (C) (D) - - - -

text - - - - - - - text text

code - - - - - - - text code
512

25.2 Type Conversion Mechanisms
Definition of Type Conversion Rules for the "-" Operator

(A) the operation is not defined for the date 0D.

(B) the operation is not defined for the time 0T.

(C) overflow may occur.

(D) the operation is not defined if decimal has a fractional part.

Definition of Type Conversion Rules for the "*" Operator

(C) overflow may occur.

Definition of Type Conversion Rules for the "/" Operator

Note that overflow may occur in all cases in this table.

A runtime error will occur if the right operand is equal to zero (0).

The "-"
operator

bo
ol

ea
n

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

ti
m

e

te
xt

, c
od

e

boolean - - - - - - - -

char - integer integer(C) integer(C) decimal(C) - - -

option - integer(C) integer integer decimal(C) - - -

integer - integer(C) integer integer decimal(C) - - -

decimal - decimal(C) decimal(C) decimal(C) decimal(C) - - -

date - date(A)(C) date(A)(C) date(A)(C) date(A)(C)(D) integer(A) - -

time - time(B)(C) time(B)(C) time(B)(C) time(B)(C)(D) - integer(B) -

text - - - - - - - -

code - - - - - - - -

* char option integer decimal

char integer (C) integer (C) integer (C) decimal (C)

option integer (C) integer (C) integer (C) decimal (C)

integer integer (C) integer (C) integer (C) decimal (C)

decimal decimal (C) decimal (C) decimal (C) decimal (C)

/ char option integer decimal

char decimal decimal decimal decimal

option decimal decimal decimal decimal

integer decimal decimal decimal decimal

decimal decimal decimal decimal decimal
513

Chapter 25. Type Conversion
Definition of Type Conversion Rules for the 'MOD' and 'DIV' Operators

A runtime error will occur if the right operand is equal to zero (0).

MOD and
DIV

char option integer decimal

char integer integer integer decimal

option integer integer integer decimal

integer integer integer integer decimal

decimal decimal decimal decimal decimal
514

Chapter 26

Numbering in Dynamics NAV

This chapter explains how items, such as documents, are
numbered in Dynamics NAV. The information is helpful if
you use or are planning to use the SQL Server Option for
Dynamics NAV. We also recommend that you read this
chapter if you use C/SIDE Database Server and want
Dynamics NAV to sort numbers correctly when you view
data with external programs.

This chapter contains the following section:

· How Does Number Sorting Work?

Chapter 26. Numbering in Dynamics NAV
26.1 How Does Number Sorting Work?

Code fields in Dynamics NAV can contain both numerical values and text strings.
Dynamics NAV ensures that numbers kept in code fields on C/SIDE Database Server are
sorted in the correct numerical order. However, this does not necessarily happen when
you use external programs to access the same data. External programs may view and
sort these numbers as text. This means that when Dynamics NAV sorts the data,
comparisons are made character by character, and not by comparing the numeric
content of the strings.

Numbers that you keep in code fields on SQL Server using the Varchar SQL data type
are not sorted in the correct numerical order. The SQL Server Option for Dynamics NAV
sorts the numbers as if they were text strings. The following table illustrates the
differences that occur:

To avoid this problem, we recommend that you use a numerical series that has a fixed
length. You can do this in three ways:

• Define a numerical series as consisting of a predefined number of digits that start
with a digit other than zero, for example, 100-399 (300 numbers). If this numerical
series is too short for your requirements, you can start a new numerical series, for
example, 40,000-69,999 (30,000 numbers). If this numerical series is too short, you
can start a new one such as 7,000,000-9,999,999 (3,000,000 numbers). Users will
quickly get used to entering numbers that have a fixed length, and the numbers will
be sorted correctly.

This is the solution that we recommend because you can now define the SQL data
type as being either Varchar or Integer and the sorting will still be correct.

• Define a numerical series that consists of a predefined number of digits and that
starts with a letter, such as A001-A999. This series will be sorted correctly. When the

Numerical Sorting Text Sorting

1 1

2 10

3 100

4 2

10 3

100 4

1001

1002

1003

.

.

9999
516

26.1 How Does Number Sorting Work?
series is complete, you can define a new series by starting with a different letter. The
users will quickly get used to entering numbers that have a fixed length, and the
numbers will be sorted correctly.

• Define a numerical series as consisting of a predefined number of digits that start
with zeros, for example, 001-999.
We do not recommend this solution because there are several inherent drawbacks.
Firstly, users tend to ignore the zeros and to refer to the first number as 1. Users may,
therefore, omit the zeros when entering numbers. Secondly, the numerical series
feature in Dynamics NAV does not permit numbers that start with zero.
Furthermore, the SQL Server Option for Dynamics NAV will not allow you to save
numbers that are defined according to this system as the Integer SQL data type.

Important

As a general rule, data types used in fields that are related to each other must be
compatible. Therefore, when you use a SQL data type in a field, you will normally have
to change the SQL data type settings of related fields in other tables. For example, in
the General Ledger application area, if you change the SQL data type of the No. field in
the G/L Account table from Varchar to Integer (or if you change the data type from
Code to Text), you must change the data type of the G/L Account No. fields in the G/L
Entry and G/L Budget Entry tables to the corresponding data type. Failure to do so
results in the display of incorrect totals, based on these tables, in the chart of accounts
and elsewhere.

Numbering Principles
To ensure that numbers kept in code or text fields are sorted correctly, irrespective of
which database server you are using, you must use the following principles:

• Always use a numerical series that has a fixed length, for example, 100-399.
• Never use a numerical series such as 1-999 in code or text fields.
• Never use a numerical series such as 001-999 in code or text fields.

Filters
If you do not follow the numbering principles, problems will arise when you apply
filters that involve numbers in Dynamics NAV.

A001

A002

A003

.

.

A999
517

Chapter 26. Numbering in Dynamics NAV
Here is an example:

• If you have not used a numerical series that has a fixed length, when you apply a
filter, for example, 10..20, the result will be 10,100......20.

When you follow the numbering principles, you must remember to use these for filters
that you apply. Here are two examples:

• If you do not follow the numbering principles when you apply a filter, for example,
2..10, the result will contain no records. This is because 2 comes after 10.

• You have followed the numbering principles and are using three-digit numbers. If
you forget to follow the same principles when you apply a filter, for example, 10..20,
the result will be 100,101,102......199.
518

Chapter 27

C/SIDE in Multiuser Environments

This chapter explains how the Database Management
System handles data integrity in a multiuser environment. It
describes how the C/SIDE system handles situations where
more than one user or process try to change the same
object.

This chapter contains the following section:

· Ensuring Data Integrity in a Multiuser Environment

· Locking in Dynamics NAV – a Comparison of the two
Server Options

Chapter 27. C/SIDE in Multiuser Environments
27.1 Ensuring Data Integrity in a Multiuser Environment

Data integrity deals with the reliability of the data stored in the database, that is, the
requirement that the database must describe the real world as accurately as possible.
All access to the data in your database goes through the DBMS (Database
Management System) as illustrated in the following figure:

The DBMS controls the interaction of the user with the database to ensure that a
number of data integrity constraints are observed. By observing these constraints, the
DBMS protects your data from damage or corruption. The DBMS is a very complex unit
in your database system, but the methods that it uses to maintain data integrity are
based on a few fundamental concepts:

• write transactions and recovery
• read consistency and concurrency
• table locking
• deadlock detection
• committing updates

These concepts are discussed and explained in the following sections.

Write Transactions and Recovery
A write transaction in C/SIDE is defined as an atomic unit of work on the database
which is either completed entirely or not at all. In other words, a transaction is a way to
encapsulate a sequence of read and write operations on the database in order to
ensure that either all or none of the operations is performed. The concept of write
transactions is a general C/SIDE facility that is used both in single- and multiuser
environments.

When a transaction has been submitted to the C/SIDE DBMS, the system is responsible
for making sure that:

• all the transaction operations are completed successfully and their effect is recorded
permanently in the database.
or

• the transaction has no effect at all on the database.

The DBMS must prevent the following situation from occurring: some of the
transaction operations are applied to the database while the other operations in the

Logical Database

The DBMS includes
mechanisms to
ensure the integrity
of your data

Interface

DBMS
520

27.1 Ensuring Data Integrity in a Multiuser Environment
same transaction are not applied. A situation like this could occur if a transaction fails
while executing.

Some typical reasons for a transaction to fail are:

• The user decides to abort the transaction.
• The transaction cannot be completed because some information is missing.
• The system crashes, due to hardware or software errors.
• There are operation errors, such as overflow or division by zero.

If the transaction is aborted, all the tables are restored to the state they were in before
the transaction started.

A typical example of a write transaction would be transferring $100 from one account
to another. This involves two operations in a single database:

1 Subtract $100 from account A.

2 Add $100 to account B.

If a power failure or some other fatal error interrupts the program after the first
operation, the database is not in a consistent state, because the second operation has
not been completed. However, bundling both operations into a single transaction,
ensures that either none or both of the operations are executed and the data will
always be consistent.

More on Write Transactions
The previous section explained that the database will always be consistent regardless of
whether a transaction is committed or aborted. The way C/SIDE handles write
transactions and keeps the database consistent is different from traditional approaches.
Traditionally, database systems contain a facility that automatically maintains a log file
which records all changes to the database. This log file contains images of a record
before it is modified and after it is modified, "before" and "after" images. The changes
recorded in the log file can be used to recover the database if failures occur.

Assume that an application program aborts because of power failure or is aborted by
the operator. The database is now in an inconsistent state, and all the modifications
that were already made to the database must be cancelled. In common database
systems this is achieved by so-called rollback recovery, that is, by backing out the
updates of the application program. This rollback is performed by reading the log file
backwards and undoing the recorded changes to the database, until the point where
the application program started. This restores the modified records to their original
contents.

The C/SIDE DBMS does not need to use a log file because the C/SIDE database is data-
version oriented. This means that each time a transaction is committed, a new version of
the database is created. While you enter new data in the database your changes are
private; not until you commit the changes, does the new data become public and
establish the newest version. The DBMS allows different applications to access and
modify the database concurrently by letting them work on individual versions that are
snapshots of the database taken at the point in time where the applications start to
access the database. The advantages of the data version approach will become clear as
you read through the following sections.
521

Chapter 27. C/SIDE in Multiuser Environments
Read Consistency and Concurrency
C/SIDE is data-version oriented, meaning that each time a write transaction is
performed, a new version of the data in the database is created. The following figure
shows three applications accessing the same database. Imagine that the first access is
made by a report. The second access is made by a user who inserts new entries in the
database, and the third access is made by a backup procedure.

In this example, generating the report is a time-consuming process, and while the
report is generated, another user enters or modifies records in the database. As each
entry is committed, a new version of the database is created, but when the report
started, a snapshot of the database was made and the report continues to work on
version A of the database. A third user starts a backup procedure. When the backup
starts, a snapshot of the current (most recent) version of the database, B, is made, and
the backup works on this version, uninfluenced by new data that the second user
continues to enter into the system. Working with data versions makes it possible for
many users to access the database without interfering with each other.

The implications of the data-version approach are many; most important is that
different applications may be reading different versions of the same database. These
versions are snapshots of the database at the time when the application started to
access the database. In this way the DBMS allows for concurrency while still
maintaining read consistency. If the accesses involve only data retrieval and no
changes, then the newest version will persist for all applications. There will be no new
version until a write transaction is performed.

When you update the database, your modifications are private and only become public
after you commit your updates. Your newly-committed updates plus the part of the
database which was not modified make up the newest version.

What is a Data Version?
The data in the database is stored in a well known data structure that resembles a tree.
A tree data structure consists of nodes. Each node in the tree, except for a special node
called the root, has one parent node and one or more child nodes. The root node has
no parent. A node that has no child node is called a leaf; a non-leaf node is called an
internal node. The level of a node is defined as one more than the level of its parent,
with the level of the root node being zero.

The data structure used in the C/SIDE database is called a B+ tree. This means that the
tree structure is balanced and that the data (records) are stored only in the leaf nodes,
not in the internal nodes. A balanced tree has the advantage that it always contains the
minimum number of levels necessary to contain the nodes, so all search paths will be

Time

Report

Backup

Entry

Version A B C D

(A)

(B)

Three applications
accessing different
versions of the
database
522

27.1 Ensuring Data Integrity in a Multiuser Environment
the shortest possible. A B+ tree structure is an efficient data structure that enables fast
searches to be performed.

Example

Imagine that the tree structure in your database contains a branch with customers A, B and C and
that there are two free database blocks available.

Assume that you need to modify customer A and C. When you update the records, the DBMS makes
a copy of the original. As illustrated in the following figure, the copies will use two free database
blocks. You will then modify the copies, and the system will create a new internal node.

If an error occurs during the transaction, or the user decides to abort the changes, the database
blocks occupied by the copied branch will be freed and be available for new database updates.

If the transaction is committed, this new internal node will replace the old node, and the database
blocks used by the old versions of customer A and C will now be available as free database blocks
that can be used by database updates.

The database contains a number of historical versions. Gradually, as the free area in the
database is consumed by succeeding historical versions, new versions begin to replace
the oldest versions.

Slow operations can run into trouble in this environment. Suppose Application A is
reading data from the latest version, while generating a very time-consuming report. In
the meantime, Application B begins performing write transactions which consist of
order entries.

Newer versions of the database are created as the order entries are added to the
database. The maximum number of historical versions in your database depends upon
the space in the database that currently is not used by the newest version, that is:

B C

B C

A1
C1

A

A

Free
Free

Free database blocks

Database
Version 1

Database
Version 2

The maximum defined size of the database
– The amount of space currently used to hold the newest version
Space available for historical versions
523

Chapter 27. C/SIDE in Multiuser Environments
At some point the data version accessed by A becomes the oldest complete data
version. But B needs a database block from this version to complete its modifications.

This conflict is solved by the DBMS by giving priority to the write transaction and
ejecting application A. A runtime error message is sent to A on its next read operation
– "Data version is no longer valid" – and it is forced to restart the process with the
newest version. But as long as B continues and the space in the database available for
historical versions remains the same, there is little hope that A will be able to generate
the report. (Enlarging the database could solve the problem.)

What is Table Locking?
In multiuser environments, the DBMS ensures the integrity of the data by setting write
locks on all the tables you are updating. This prevents other users from making
changes to the same tables.

While write operations automatically lock a table during updates, you can explicitly
lock a table, even if you are not performing a write operation. By locking a table
immediately before accessing a record, you are assured that the data you might
change in the record conforms to the data you have read, even if some time has
elapsed. A write lock does not influence data retrieval. This means that locking a table
does not prevent other users from gaining read access to the records in the table.

With C/SIDE Database Server, a write lock is active until the write transaction is either
aborted or committed. This figure uses pseudo-language syntax to illustrate the scope
of write locks.

This illustrates both an explicit lock and an automatic lock. Line (1) in the write
transaction explicitly locks table A. If this explicit lock was not set on table A, the DBMS
would automatically lock this table when a record is inserted (3). Table B is not locked
explicitly, but is locked automatically by the DBMS when a record is inserted (4). Both
locks are active until the EndWriteTransaction command is executed in line (5).

What Is Deadlock Detection?
table locking must be carefully coordinated if a multiuser system is to function
correctly.

If different transactions require write access to several tables at once, you must be
careful to avoid a Deadlock situation. A deadlock occurs when one transaction has

.

.
BeginWriteTransaction;
 LockTable(TableA) (1)
 FindRec(TableA, ...); (2)
 .
 .
 InsertRec(TableA, ...) (3)
 .
 InsertRec(TableB, ...); (4)
 .
 .
 .
 .
 .
EndWriteTransaction (5)
.
.

Ta
bl

e
A

lo
ck

ed

Ta
bl

e
B

lo
ck

ed

The scope of
write locks
524

27.1 Ensuring Data Integrity in a Multiuser Environment
access to and locks some of the tables it needs and another transaction has locked
some other tables that it needs and neither transaction can continue before the other
has finished and releases the tables that it has locked.

This means that each transaction must wait for the other to finish. As a result both
processes will have to wait forever. This situation is also known as Deadly Embrace.

In order to avoid deadlocks, the DBMS has an automatic deadlock detection
mechanism, which detects these situations and ejects one of the write transactions. The
following figure illustrates how a deadlock can arise:

The DBMS will always eject the application that causes the deadlock – as in the
previous example. This rule applies no matter how many applications are involved in a
deadlock.

Are There Any Differences between Commit in C/AL and C?
Although the concept of committing an update is the same whether you are using
C/AL code or C/FRONT (the toolkit that allows you to develop applications, in the C
programming language, that access a C/SIDE database), there are some minor
differences. This subsection explains these differences in detail.

When you want to perform an update using C/FRONT, the first thing you must do is to
tell the system explicitly that you want to perform a write transaction (use DBL_BWT,
BeginWriteTransaction.) Likewise you must use DBL_EWT
(EndWriteTransaction) to explicitly tell the system when your write transaction
ends.

Application 1 Application 2

Ti
m

e

LockTable(A)

Table A now Locked
LockTable(B)

Table B now locked
LockTable(B)

Wait for table B to
be unlocked LockTable(A)

Wait for table A to
be unlocked

The DBMS detects a deadlock situation, and
ejects application 2.

Table B locked

Application 2 ejected
and transaction aborted.
Lock attempt on Table A
cancelled and Table B
automatically unlocked

The automatic deadlock
detection ejects one of
the applications
525

Chapter 27. C/SIDE in Multiuser Environments
When you use C/AL code to update a C/SIDE database, these
BeginWriteTransaction and EndWriteTransaction statements are handled
implicitly by the system. That is, the system automatically executes these commands
before and after the C/AL code is executed. This means that if you only need to
perform a single write transaction you do not have to commit your update explicitly: it
is done automatically by the system. If, however, you need to perform more than one
write transaction, you have to use COMMIT() in order to separate the transactions.

The next figure illustrates these differences:

The C/AL code contains two write transactions. When the C/AL code starts to execute,
the write transactions are automatically enabled. By issuing the COMMIT()command,
you tell the system that the first write transaction has ended, and you prepare the
system for the second. As the execution of the C/AL code is completed, the system
automatically ends the second write transaction. When you use C code to perform the
same transactions, each transaction must be explicitly encapsulated within the
DBL_BWT() and DBL_EWT() commands.

BeginWriteTransaction
C/AL Module

C/AL Statements

Commit(...)

C/AL code C code

DBL_BWT();

C code

DBL_EWT();

DBL_BWT();

DBL_EWT();

C code

}
}

}
}

1. Trans.

2. Trans.
2. Trans.

1. Trans.

EndWriteTransaction

C/AL Statements

Differences in
committing
updates in C/AL
and C code
526

27.2 Locking in Dynamics NAV – a Comparison of the two Server Options
27.2 Locking in Dynamics NAV – a Comparison of the two Server Options

This section explains the differences and similarities in the way that locking is carried
out in the two database options for Dynamics NAV: C/SIDE Database Server and the
SQL Server Option.

Important

The following information only covers the default transaction type UpdateNoLocks for
the SQL Server Option for Dynamics NAV. For information about the other transaction
types, see the C/SIDE Reference Guide online Help.

Both Server Options

Locking In the beginning of a transaction, the data that you read is not locked. This means that
reading data does not conflict with transactions that modify the same data. If you want
to ensure that you are reading the latest data from a table, you must lock the table
before you read it.

Locking single
records

Normally, you must not lock a record before you read it even though you may want to
modify or delete it afterwards. When you try to modify or delete the record, you get an
error message if another transaction has modified or deleted the record in the
meantime. You receive this error message because C/SIDE checks the timestamp that it
keeps on all the records in a database and detects that the timestamp on the copy you
have read is different from the timestamp on the modified record in the database.

Locking record sets Normally, you lock a table before reading a set of records in that table if you want to
read these records again later to modify or delete them. You must lock the table to
ensure that another transaction does not modify these records in the meantime.

You will not receive an error message if you do not lock the table even though the
records have been modified as a result of other transactions being carried out while
you were reading them.

Minimizing Deadlocks
To minimize the amount of deadlocks that occur, you must lock records and tables in
the same order for all transactions. You can also try to locate areas where you lock
more records and tables than you actually need, and then diminish the extent of these
locks or remove them completely. This can prevent conflicts from occurring that
involve these records and tables.

If this does not prevent deadlocks, you can, as a last resort, lock more records and
tables to prevent transactions from running concurrently.

If you cannot prevent the occurrence of deadlocks by programming, you must run the
deadlocking transactions separately.

Locking in C/SIDE Database Server
Data that is not locked is read from the same snapshot (version) of the database.If you
call a modifying function (for example, INSERT, MODIFY or DELETE), on a table, the
whole table is locked.
527

Chapter 27. C/SIDE in Multiuser Environments
Locking record sets As mentioned earlier, you normally lock a table before reading a set of records in that
table if you want to read these records again later and modify or delete them. With
C/SIDE Database Server, you can choose to lock the table with
LOCKTABLE(TRUE,TRUE) after reading the records for the first time instead of locking
with LOCKTABLE before reading the records for the first time.

When you try to modify or delete the records, you receive an error message if another
transaction has modified the records in the meantime.

You also receive an error message if another transaction has inserted a record into the
record set in the meantime. However, if another transaction has deleted a record from
the record set in the meantime, you will not be able to notice this change. The purpose
of locking with LOCKTABLE(TRUE,TRUE) after reading the records for the first time is
to improve concurrency by postponing the table lock that C/SIDE Database Server puts
on the table.

Locking in SQL Server
When data is read without locking, you get the latest (possibly uncommitted) data
from the database. If you call Rec.LOCKTABLE, nothing happens right away. However,
when data is read from the table after LOCKTABLE has been called, the data is locked.

If you call INSERT, MODIFY or DELETE, the specified record is locked immediately. This
means that two transactions, which either insert, modify or delete separate records in
the same table do not conflict. Furthermore, locks are also be placed whenever data is
read from the table after the modifying function has been called.

When you call INSERT, MODIFY or DELETE, only one record is locked when no
SumIndexFields are maintained in the table or when calling INSERT, MODIFY or DELETE
doesn’t require any SumIndexFields to be updated. If you place a lock on a sum, you
prevent other transactions from updating that sum.

It is also important to note that even though SQL Server initially puts locks on single
records, it can also choose to escalate a single record lock to a table lock. It will do so if
it determines that the overall performance can be improved by not having to set locks
on individual records. The improvement in performance must outweigh the loss in
concurrency that this excessive locking causes.

If you specify what record to read, for example, by calling Rec.GET, that record is
locked. This means that two transactions, which read specific, but separate, records in a
table do not cause conflicts.

If you browse a record set (that is, read sequentially through a set of records), for
example, by calling Rec.FIND('-') or Rec.NEXT, the record set (including the empty
space) is locked as you browse through it. However, the locking implementation used
in SQL Server means that the record before and the record after this record set are also
locked. This means that two transactions, which just read separate sets of records in a
table will cause a conflict if there are no records between these two record sets. When
locks are placed on a record set, other transactions cannot put locks on any record
within the set.

Note that C/SIDE decides how many records to retrieve from the server when you ask
for the first or the next record within a set. C/SIDE then handles subsequent reads with
no additional effort, and fewer calls to the server give better performance. In addition
528

27.2 Locking in Dynamics NAV – a Comparison of the two Server Options
to improving performance, this means that you cannot precisely predict when locks are
set when you browse.

The SQL Server Option for Dynamics NAV only supports the default values for the
parameters of the LOCKTABLE function – LOCKTABLE(TRUE,FALSE).

Note

Dynamics NAV tables that have keys defined for SumIndexFields cause additional
tables to be created in SQL Server to support SIFT functionality. One table is created for
each key that contains SumIndexFields. When you modify a Dynamics NAV table that
has keys defined for SumIndexFields, modifications can be made to these SQL Server
tables. When this happens, there is no guarantee that two transactions can modify
different records in the Dynamics NAV table without causing conflicts.

Locking Differences in the Code
A typical use of LOCKTABLE(TRUE,TRUE) in C/SIDE Database Server is shown in the
first column of the following table. The equivalent code for the SQL Server Option is
shown in the second column. The code that works on both servers is shown in the third
column. The RECORDLEVELLOCKING property is used to detect whether record level
locking is being used. If this is the case, then you are using the SQL Server Option for
Dynamics NAV. This is currently the only server that supports record level locking.

C/SIDE Database Server SQL Server

IF Rec.FIND('-') THEN Rec.LOCKTABLE;

 REPEAT IF Rec.FIND('-') THEN

 UNTIL Rec.NEXT = 0; REPEAT

Rec.LOCKTABLE(TRUE,TRUE); UNTIL Rec.NEXT = 0;

IF Rec.FIND('-') THEN IF Rec.FIND('-') THEN

 REPEAT REPEAT

 Rec.MODIFY; Rec.MODIFY;

 UNTIL Rec.NEXT = 0; UNTIL Rec.NEXT = 0;

Both Server Types

IF Rec.RECORDLEVELLOCKING THEN

 Rec.LOCKTABLE;

IF Rec.FIND('-') THEN

 REPEAT

 UNTIL Rec.NEXT = 0;

IF NOT Rec.RECORDLEVELLOCKING THEN

 Rec.LOCKTABLE(TRUE,TRUE);

IF Rec.FIND('-') THEN

 REPEAT

 Rec.MODIFY;

 UNTIL Rec.NEXT = 0;
529

Chapter 27. C/SIDE in Multiuser Environments
530

Chapter 28

Caption Class Functionality

This chapter describes the caption class functionality and
explains how the CaptionClassTranslate function trigger (ID
15) in Codeunit 1 deals with it.

The chapter covers the following subjects:

· Syntax

· Function Code

Chapter 28. Caption Class Functionality
28.1 Syntax

If the CaptionClass property of a field or a control is defined, the function trigger
CaptionClassTranslate (ID 15) in Codeunit 1 (ApplicationManagement) is called by the
system every time the field or control is shown. The purpose of this function is to
replace the caption, as defined in the design of the field or control, with another string.

The syntax of this procedure is:

CaptionClassTranslate (<LANGUAGE>;<CAPTIONEXPR>)

LANGUAGE

____<DataType> := [Integer]
____<DataValue> := ……

CAPTIONEXPR

____<DataType> := [String]
____<Length> <= 80

____<DataValue> := <CAPTIONAREA>,<CAPTIONREF>

As you can see, two parameters are passed to this function:

• LANGUAGE
• CAPTIONEXPR

LANGUAGE The LANGUAGE parameter is automatically mentioned by the system as is the
Windows Language ID of the active language in Dynamics NAV.

Example

If the active language in Dynamics NAV is English (United States), LANGUAGE will hold the value
1033.

CAPTIONEXPR The CAPTIONEXPR parameter holds the content of the CaptionClass property of the
field or control.
532

28.1 Syntax
Example

In Table 13 (Salesperson/Purchaser), the Global Dimension 1 Code (5050) field has the string
'1,1,1' as its CaptionClass. Open the Salespeople/Purchasers form, activate the debugger and
open the Zoom window (Ctrl + F8) and the CaptionClassTranslate function trigger pops up in the
Debugger:

In the C/AL Locals window, you can see that the CaptionExpr parameter holds the string '1,1,1'.

Note

In the Zoom window, you will not find the Global Dimension 1 Code field. Instead
you find the Department Code field – as a result of the CaptionClass property and the
CaptionClassTranslate function trigger.

Function Code
In a way, the function trigger CaptionClassTranslate (ID 15) is a system trigger. A
programmer can intervene here every time the CaptionClass property – if it is defined –
is evaluated by the system.

If we take a look at this trigger in the standard CRONUS database, we see that it
already contains some code:

CaptionClassTranslate(Language : Integer;CaptionExpr : Text[80])
CommaPosition := STRPOS(CaptionExpr,',');
IF (CommaPosition > 0) THEN BEGIN
__CaptionArea := COPYSTR(CaptionExpr,1,CommaPosition - 1);
__CaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);
__CASE CaptionArea OF
____'1' : EXIT(DimCaptionClassTranslate(Language, CaptionRef));
533

Chapter 28. Caption Class Functionality
____'2' : EXIT(VATCaptionClassTranslate(Language, CaptionRef));
__END;
END;
EXIT(");

This standard code analyzes and unravels the CaptionExpr parameter. As we saw
earlier, this parameter has the following syntax:

CAPTIONEXPR := <CAPTIONAREA>,<CAPTIONREF>

Depending upon the value of the CAPTIONAREA, different procedures are called. Look
at the CASE … OF statement, either:

DimCaptionClassTranslate(Language, CaptionRef)

or

VATCaptionClassTranslate(Language, CaptionRef)

Here is a detailed description of these functions.

CAPTIONAREA The first part of the CaptionExpr parameter, up to the first comma, is the
CAPTIONAREA, and has the following syntax:

CAPTIONAREA

__<DataType> := [SubString]
__<Length> <= 10

__<DataValue> := 1..9999999999

__// 1 for Dimension Area
__// 2 for VAT

Note

In the standard functionality, only two CAPTIONAREA values are defined: 1 for
Dimension Area and 2 for VAT.

CAPTIONREF The second part of the CaptionExpr parameter, after the first comma, is the
CAPTIONREF, and has the following syntax:

CAPTIONREF

<DataType> := [SubString]
<Length> <= 10

<DataValue> :=

IF (<CAPTIONAREA> = 1)
__<DIMCAPTIONTYPE>,<DIMCAPTIONREF>

IF (<CAPTIONAREA> = 2)

__<VATCAPTIONTYPE>,<VATCAPTIONREF>

As you can see, depending upon the value of the CAPTIONAREA, CAPTIONREF can
consist of either one (VATCAPTIONTYPE) or two references
(VATCAPTIONTYPE,VATCAPTIONREF or DIMCAPTIONTYPE,DIMCAPTIONREF – and
even more than two as we will see in the following).
534

28.1 Syntax
Note

This is the way the standard functionality in Dynamics NAV deals with the CaptionClass
property. Every field or control with a defined CaptionClass has a string in this property
with the syntax described earlier. For new functionality, a programmer could define
other syntaxes and add code to the function trigger CaptionClassTranslate (ID 15) to
handle these syntaxes.

Syntax for CAPTIONREF
As described earlier, the CAPTIONREF part of the CaptionExpr parameter can have the
following syntax:

CAPTIONREF := < DIMCAPTIONTYPE >,< DIMCAPTIONREF >

if CAPTIONAREA equals 1, or

CAPTIONREF := < VATCAPTIONTYPE >,< VATCAPTIONREF >

if CAPTIONAREA equals 2. In the following, we find the syntax for these different sub
references.

Dimension Area
If the CAPTIONAREA equals 1, the caption of the field or control should be retrieved
from the dimensions information.

DIMCAPTIONTYPE This reference determines where the main part of the new caption should be retrieved
from. The syntax is:

DIMCAPTIONTYPE
__<DataType> := [SubString]

__<Length> <= 10

<DataValue> := 1..6
// 1 to retrieve Code Caption of Global Dimension

// 2 to retrieve Code Caption of Shortcut Dimension

// 3 to retrieve Filter Caption of Global Dimension
// 4 to retrieve Filter Caption of Shortcut Dimension

// 5 to retrieve Code Caption of any kind of Dimensions

// 6 to retrieve Filter Caption of any kind of Dimensions

DIMCAPTIONREF DIMCAPTIONREF consists of a number of sub references:

DIMCAPTIONREF:= < number >,< DIMOPTIONALPARAM1>,

< DIMOPTIONALPARAM2 >

The following syntax describes what < number > can be and what
<DIMOPTIONALPARAM1>, and <DIMOPTIONALPARAM2> are:

DIMCAPTIONREF

__<DataType> := [SubString]

__<Length> <= 10
<DataValue> :=
535

Chapter 28. Caption Class Functionality
IF (<DIMCAPTIONTYPE> = 1)
__1..2,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 2)

__1..8,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>
IF (<DIMCAPTIONTYPE> = 3)

__1..2,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 4)
__1..8,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 5)

__[Table]Dimension.[Field]Code, <DIMOPTIONALPARAM1>,
__<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 6)

__[Table]Dimension.[Field]Code, <DIMOPTIONALPARAM1>,
__<DIMOPTIONALPARAM2>

DIMOPTIONALPARAM1
DIMOPTIONALPARAM1

__<DataType> := [SubString]

__<Length> <= 30
<DataValue> := [String]

// a string added before the dimension name

DIMOPTIONALPARAM2
DIMOPTIONALPARAM2
__<DataType> := [SubString]

__<Length> <= 30

<DataValue> := [String]
// a string added after the dimension name

VAT
If the CAPTIONAREA equals 2, the caption of the field or control should be replaced by
its original caption plus an extra string. This string should state either 'Excl. VAT' or 'Incl.
VAT'. The syntax is:

VATCAPTIONTYPE
VATCAPTIONTYPE
<DataType> := [SubString]

<Length> := 1

<DataValue> := '0' -> <field caption + 'Excl. VAT'>
'1' -> <field caption + 'Incl. VAT'>

VATCAPTIONREF
VATCAPTIONREF contains the caption of the field or control:

VATCAPTIONREF

__<DataType> := [SubString]
__<Length> <= 30

<DataValue> := field caption
536

28.2 Function Code
28.2 Function Code

DimCaptionClassTranslate (ID 7)
After CaptionClassTranslate has sifted the contents of the CaptionClass property
(passed in the CaptionExpr parameter) in a CAPTIONAREA and a CAPTIONREF,
DimCaptionClassTranslate will be called (if CAPTIONAREA equals 1). It passes the
Language ID and the CAPTIONREF part of the CaptionClass property.

This function can be split into three main parts:

1 Collect the G/L Setup data, if not done yet.

2 Sift out the comma separated subparts of the CAPTIONREF (see the previous
description of the CAPTIONREF syntax.)

3 Determine what the caption should be, depending on the DIMCAPTIONTYPE and
DIMCAPTIONREF.

Code
DimCaptionClassTranslate(Language : Integer;CaptionExpr : Text[80]) : Text[80]

Begin (1) IF NOT GLSetupRead THEN BEGIN

IF NOT GLSetup.GET THEN

 EXIT(");

 GLSetupRead := TRUE;

End (1) END;

Begin (2) CommaPosition := STRPOS(CaptionExpr,',');

IF (CommaPosition > 0) THEN BEGIN

 DimCaptionType := COPYSTR(CaptionExpr,1,CommaPosition - 1);

 DimCaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);

 CommaPosition := STRPOS(DimCaptionRef,',');

 IF (CommaPosition > 0) THEN BEGIN

 DimOptionalParam1 := COPYSTR(DimCaptionRef,CommaPosition + 1);

 DimCaptionRef := COPYSTR(DimCaptionRef,1,CommaPosition - 1);

 CommaPosition := STRPOS(DimOptionalParam1,',');

 IF (CommaPosition > 0) THEN BEGIN

 DimOptionalParam2 := COPYSTR(DimOptionalParam1,CommaPosition + 1);

 DimOptionalParam1 := COPYSTR(DimOptionalParam1,1,CommaPosition - 1);

 END ELSE BEGIN
537

Chapter 28. Caption Class Functionality
 DimOptionalParam2 := ";

 END;

 END ELSE BEGIN

 DimOptionalParam1 := ";

 DimOptionalParam2 := ";

End (2) END;

 CASE DimCaptionType OF

Begin (3) '1': // Code Caption - Global Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Global Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Global Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Global Dimension 2 Code")

 END;

 END;

 END;

 '2': // Code Caption - Shortcut Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Shortcut Dimension 1 Code") THEN
538

28.2 Function Code
 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Shortcut Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Shortcut Dimension 2 Code")

 END;

 '3':

 BEGIN

(same as case '1' for field "Shortcut Dimension 3 Code")

 END;

 '4':

 BEGIN

(same as case '1' for field "Shortcut Dimension 4 Code")

 END;

 '5':

 BEGIN

(same as case '1' for field "Shortcut Dimension 5 Code")

 END;

 '6':

 BEGIN

(same as case '1' for field "Shortcut Dimension 6 Code")

 END;

 '7':

 BEGIN

(same as case '1' for field "Shortcut Dimension 7 Code")

 END;

 '8':

 BEGIN
539

Chapter 28. Caption Class Functionality
(same as case '1' for field "Shortcut Dimension 8 Code")

 END;

 END;

 END;

 '3': // Filter Caption - Global Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Global Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Global Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Global Dimension 2 Code")

 END;

 END;

 END;

 '4': // Filter Caption - Shortcut Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Shortcut Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +
540

28.2 Function Code
 GLSetup.FIELDCAPTION("Shortcut Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Shortcut Dimension 2 Code")

 END;

 '3':

 BEGIN

(same as case '1' for field "Shortcut Dimension 3 Code")

 END;

 '4':

 BEGIN

(same as case '1' for field "Shortcut Dimension 4 Code")

 END;

 '5':

 BEGIN

(same as case '1' for field "Shortcut Dimension 5 Code")

 END;

 '6':

 BEGIN

(same as case '1' for field "Shortcut Dimension 6 Code")

 END;

 '7':

 BEGIN

(same as case '1' for field "Shortcut Dimension 7 Code")

 END;

 '8':

 BEGIN

(same as case '1' for field "Shortcut Dimension 8 Code")

 END;

 END;

 END;
541

Chapter 28. Caption Class Functionality
 '5': // Code Caption - using Dimension Code as Reference

 BEGIN

 IF Dim.GET(DimCaptionRef) THEN

 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(DimOptionalParam1);

 END;

 '6': // Filter Caption - using Dimension Code as Reference

 BEGIN

 IF Dim.GET(DimCaptionRef) THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(DimOptionalParam1);

 END;

End (3) END;

END;

EXIT(");

VATCaptionClassTranslate (ID 9)
If CAPTIONAREA equals 2, CaptionClassTranslate passes the CaptionExpr parameter
CAPTIONREF, which is actually the VATCAPTIONTYPE, and calls
VATCaptionClassTranslate. VATCaptionClassTranslate also passes the Language ID and
the CAPTIONREF part of the CaptionClass property.

This function can be split into two main parts:

1 Sift out the comma separated subparts of the CAPTIONREF (see the previous
description of the CAPTIONREF syntax.)

2 Determine what the caption should be, depending on the VATCAPTIONTYPE. In
either case, the original caption is replaced by its original caption plus the string:

• 'Excl. VAT' if VATCAPTIONTYPE equals 1.
• 'Incl. VAT' if VATCAPTIONTYPE equals 2.
542

28.2 Function Code
Code
VATCaptionClassTranslate(Language : Integer;CaptionExpr : Text[80]) : Text[30]

Begin (1) CommaPosition := STRPOS(CaptionExpr,',');

IF (CommaPosition > 0) THEN BEGIN

 VATCaptionType := COPYSTR(CaptionExpr,1,CommaPosition - 1);

End (1) VATCaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);

Begin (2) CASE VATCaptionType OF

 '0' : EXIT(COPYSTR(STRSUBSTNO('%1

%2',VATCaptionRef,Text016),1,30));

 '1' : EXIT(COPYSTR(STRSUBSTNO('%1
%2',VATCaptionRef,Text017),1,30));

End (2) END;

END;

EXIT(");
543

Chapter 28. Caption Class Functionality
544

Chapter 29

Supporting Record Level Security

This chapter explains how to implement record level security
in the SQL Server Option for Dynamics NAV.

· Record Level Security

Chapter 29. Supporting Record Level Security
29.1 Record Level Security

The SQL Server Option for Dynamics NAV allows you to limit the access that users have
to the information stored in the database by specifying that they can only access
records that fulfill certain criteria in specific tables. This is called record level security
and you implement it by placing security filters on the roles and permissions that you
assign to your users.

One important thing to remember when using security filters is that the filters and the
business logic of your application must go hand in hand if you are to avoid problems.
Record level security has no influence on the business logic of your application but the
business logic of your application can have a great influence on record level security
and the filters that you can apply. Record level security is only useful when it
compliments/supplements your business logic.

Implementing Record Level Security
Once you have set up your record level security filters, Dynamics NAV automatically
applies them in most situations. This means that the user only receives an error
message if they manually attempt to access data that is outside the range of the
security filters that have been defined for them.

When a form is opened from a command button or menu item, C/SIDE automatically
applies record level security filters to the main record variable used in the form,
provided that the command button or menu item in question uses properties to run
the form, and not code.

Similarly, when a report or dataport is opened from a command button or menu item,
C/SIDE automatically applies record level security filters to all the record variables used
in the request filter tabs, provided that the command button or menu item in question
uses properties to run the report or dataport, and not code.

C/SIDE does not apply record level security filters to user defined global and local
variables. So to help users stay within the defined security filters you must include the
appropriate statements in the code that applies the filters. Security filters are applied
on a record variable by using the SETPERMISSIONFILTER function that is available for
the record variable.

Example

This example finds the first record within your read permission security filter:

Customer.SETPERMISSIONFILTER;

Customer.FIND('-');

Note

Record level security filters affect performance in the same way as any other filters that
are applied by the user. It is important that the record level security filters have
matching keys in tables that contain a large number of records, and that these keys are
used. C/SIDE does not automatically select the most effective key to use. If, for
example, a security filter specifies that a user is only allowed to see records that he
546

29.1 Record Level Security
created himself by placing a filter on a field called User ID, the matching key must start
with User ID. Furthermore, to ensure the best performance, the user must select the
User ID key when opening the form for the first time. In some situations you can
choose to change the default sorting in the form, or in the command buttons, menu
items and code that opens the form.

Forms, Reports and Dataports
As stated earlier, when a form, report or dataport is opened from a command button or
menu item, C/SIDE automatically applies record level security filters provided that the
command button or menu item in question uses properties to run the form, and not
code. This means that as long as the form in question is a simple one the security filters
that you apply at user level will be enough to ensure that the degree of security that
you want is implemented.

Find('+') and
calcsums

However, if the report or form contains some complex C/AL code – for example,
Find('+') – or contains a calcsum, the security filters that you have applied at user
level will probably not be enough to ensure that the form or report can run
successfully. In which case, the user will probably receive an error message informing
them that they do not have read permission to a particular table.

This situation generally arises because the form or report in question contains
functionality that requires access to all the records in the table and this conflicts with
the user’s security filters that only give them access to some of the records in the table.
This can happen, for example, if the form needs to read the last record in the table
before it can insert a new record and the last record in the table lies outside the range
of the security filter that has been applied to the user.

There is, however, a relatively simple method of overcoming this difficulty. The user has
already been assigned a role that gives them permission to access the records in the
table. This role was then limited to some of the records in the table by applying the the
security filter that conflicts with the functionality of the form. To resolve this conflict,
you must augment the users permissions by assigning them a new role that gives them
indirect read access to all the records in the table.

Now, when the user runs the form, the code will be able to read the last record in the
table even though it is outside the range specified by the user’s security filter. The fact
that the user has been given indirect permission to read the entire table does not
compromise the integrity of the security system that you are enforcing by
implementing record level security. The user is still unable to see the records that are
outside the range of the security filter, but the application can perform the calculations
and read all the data that is necessary for it to function correctly and give the user the
information they require.

This solution works because security permissions are added together and are not
mutually exclusive.

Codeunits
A typical Dynamics NAV application also contains forms and reports that include more
complex functionality that requires the form or report to run individual codeunits or
chains of codeunits. These codeunits can contain code that accesses many different
tables.
547

Chapter 29. Supporting Record Level Security
In Dynamics NAV, codeunits are independent objects that have their own permissions.
They are not assigned roles but rather given permission to access various tables. A
codeunit’s permissions are part of its properties. These permissions are indirect because
codeunits can only access an object after they have been activated by a user who has
permission to run the form or report that calls the codeunit.

When a user runs a form that calls a codeunit there is no guarantee that the security
filter(s) that have been applied to the user’s permissions are compatible with the
permissions that have been defined for the codeunit. If they are incompatible the user
will receive an error message informing them that they don’t have permission to access
to a particular table.

To resolve this conflict, you must ensure that the user’s security filters are compatible
with the permissions defined for the codeunit. To do this, you must assign the user a
new role that gives them indirect read access to all the records in the table and then
open the codeunit in the Object Designer, open the Properties window and give the
codeunit read permission to the table in question.

However, the error message will not always be so informative. In this case, you must
use the Debugger to identify the point at which the code errors. This will help you
identify the table involved and you can then give the codeunit read permission to it.
You should then run the form again. If you receive another error message, you can
repeat this procedure until the form runs successfully.

It is also possible that your license does not allow you to modify the codeunits in
question. In this case, you must contact your local Microsoft Business Solutions Partner.

Guidelines for Implementing Record Level Security
With all this in mind we can formulate some general rules for implementing record
level security:

• Record level security and the business logic of the application must work together.
• For forms, reports and dataports that are run by properties and not code, the

security filters that you apply at user level are sufficient.
• For forms, reports and dataports that run code, assign an extra indirect read

permission at user level.
• For codeunits, assign the extra indirect read permissions at user level and at object

level.
• Permissions are cumulative and not mutually exclusive.

Important:

Record level security filters do not support wildcards. This means that you cannot use *
and ? in the filters. You can use the other symbols, delimiters and operators, such as, <,
>, |, &, .. and =.

The maximum length of a security filter is 250 characters, but all of the delimiters,
symbols and operators such as, <, >, |, &, .. and = also count as characters and can
considerably reduce the length of the security filters that you can enter.

Furthermore, security filters are concatenated and therefore the sum of all the security
filters applied to a user or a role cannot exceed 250 characters.
548

29.1 Record Level Security
Applying Security Filters in a Posting Scenario
As explained earlier, applying security filters in situations where the functionality
involves running one or more codeunits is quite tricky. A typical example of this would
be a posting procedure. The security filters are applied to the user in the normal way
and must then be supplemented with extra indirect read permissions at user level and
at object level.

The following example demonstrates how to set security filters that limit the
permissions that a user has to certain functionality and illustrates the complexity of this
process.

This example involves a user that can post in the G/L Journal. The user has been given
the following roles:

The first three roles are standard Dynamics NAV roles and the last one is a new role
that has been created for this example. For this example we have created a user called
TestUser who has been assigned these roles.

Note

To complete this example you must be able to log on as two different users – TestUser
who wants to post in the G/L Journal and an administrator who modifies the roles and
permissions that TestUser has been assigned. The administrator has been given the
SUPER role. It is also important to remember that TestUser must log off and on again
every time the administrator modifies the permissions system.

In this scenario, you only want TestUser to be able to post entries that relate to the
Administration department (Global Dimension 1). You must therefore apply security
filters to the roles you have given TestUser. You must apply these filters to all the roles
that give TestUser permission to access the G/L Account and G/L Entry tables:

Role Description

All All Users

G/L-Journal Create entries in G/L journals

G/L-Journal, Post Post G/L journals

Payment Terms A role created for this example that gives access to the
Payment Terms table.
549

Chapter 29. Supporting Record Level Security
Let’s see what happens when TestUser tries to post an entry in the General Journal.

Note

The aim of this example is to ensure that TestUser can only post entries in the General
Journal that refer to the Administration department. You must therefore make sure
that the Department Code field is visible in the General Journal window.

1 Log on to the database as TestUser and open the General Ledger and click General
Journals to open the General Journal window.

2 In the Batch Name field select CASH and enter the information that you want to
post. Remember to select ADM in the Department Code field:

If the Department Code field is not visible, click View, Show Column to open the
Show Column window and enter a check mark beside the Department Code field.

3 Click Posting, Post (F11) to post the entry. You receive an error message informing
you that you don’t have read permission to the G/L Entry table.

This occurs because each time you post a new entry it must be given a unique ID.
Before it can create this ID, Dynamics NAV must know the ID of the last record in the
G/L Entry table. If the last entry in the table is not for the ADM department, TestUser is
not allowed to read it and this is why the error message says that TestUser does not
have read permission to the G/L Entry table. If the last record was for the ADM
department TestUser would be able to read it and would not receive this error
message.
550

29.1 Record Level Security
To overcome this problem, you must give TestUser indirect read permission to the
entire G/L Entry table.

To do this, log on to the database as the administrator and create an extra role that
only contains this permission and give it to TestUser:

Remember to synchronize the security system after altering the permission system.

Log on to the database as TestUser and try to post the entry again.

Unfortunately, you still receive the same error message telling you that you don’t have
read permission to the G/L Entry table. This occurs because the functionality of the
form requires it to run a few codeunits and one or more of these codeunits needs to be
able to read all the records in the G/L Entry table. To identify which codeunits are
causing the error, you must use the Debugger to debug the code as the form is run.

You must therefore give TestUser permission to run the Debugger. To do this create an
extra role that only contains this permission and give it to TestUser:

Remember to synchronize the security system after altering the permission system.

Debugging the code To debug the code and identify the codeunits that are causing the error:

1 Log on to the database as TestUser and open the General Journal window.

2 In the Batch Name field select CASH and enter the information that you want to
post. Remember to select ADM in the Department Code field. Don’t post the entry
yet.

3 Click Tools, Debugger, Breakpoint on Triggers to remove the check mark from this
option. The debugger will only stop when the code encounters an error.

4 Click Tools, Debugger, Active to activate the Debugger.

5 In the General Journal window, click Posting, Post.

The application runs a little slower now because the Debugger is running in the
background.
551

Chapter 29. Supporting Record Level Security
After a while the Debugger opens and shows you where it encountered the first
error:

As you can see from this picture, the first error occurred in codeunit 13, Gen. Jnl.-Post
Batch when the code tried to read the last record – FINDLAST – in the G/L Entry table.

To solve this, you must give codeunit 13 permission to read all the records in the G/L
Entry table.

To give the extra permission to the codeunit:

1 In the Object Designer, open codeunit 13, Gen. Jnl.-Post Batch and open the
Properties window.

2 In the Value field of the Permissions property, click the AssistButton k to open the
Permissions window for the codeunit.

3 Add the G/L Entry table to the list and make sure that the codeunit only has read
permission to this table:
552

29.1 Record Level Security
4 Click OK to commit the changes that you have made in this window.

5 Close, save and compile the codeunit.

You do not need to synchronize the security system after altering the properties of the
codeunit as it is not part of the permission system.

Now log on to the database as TestUser, activate the Debugger and try to post the
entry again. The code encounters another error:

In the Debugger window, you can see that this time the error occurred in codeunit 12,
Gen. Jnl.-Post Line when the code tried to read the last record – FINDLAST – in the
G/L Entry table.

To solve this, you must repeat the procedure described earlier and give codeunit 12,
Gen. Jnl.-Post Line permission to read all the records in the G/L Entry table.

Log on to the database as TestUser, activate the Debugger and try to post the entry
again. This time the entry was posted correctly.

Turn off the Debugger and try to post an entry for another department to see what
happens. Now you receive a different error message informing you that you don’t have
write permission to the G/L Entry table.

Well, you know that this is not quite true because you have just posted the previous
entry. However, if the message was more detailed, it might reveal too much. What it
means is that your security filters work and you can only post entries for the ADM
department.
553

Chapter 29. Supporting Record Level Security
Security Filters and Complex Forms
As mentioned earlier, C/SIDE does not apply record level security filters to user defined
global and local variables. This means that if your application contains complex forms
that use variables to access tables containing sensitive data, the security filters that you
set will not be applied to these variables. To ensure that users cannot access the
sensitive data, you must modify the code that these forms contain.

In the example that you have just created, you know that TestUser can only post entries
for the ADM department. However, you still need to investigate whether or not
TestUser can read any data from the other departments.

Log on to the database as TestUser and open some of the forms in the General Ledger
and check the data that is displayed. Remember, it is the complex forms that are most
likely to use variables.

To test one such form:

1 In the General Ledger, click Chart of Accounts to open the Chart of Account
window. This window only shows data for the ADM department.

2 In the Chart of Account window, click Balance, G/L Balance by Dimension to open
the G/L Balance by Dimension window:

This is a matrix form that displays a summary of the balances for all the accounts in
the chart of accounts. Furthermore, the list of balances can be presented in several
ways by applying different filters.
554

29.1 Record Level Security
3 In the Show as Lines field, use the AssistButton p to open the Dimension Selection
window:

In this window, you select the different dimensions that you use to filter the data
displayed in the G/L Balance by Dimension window.

4 Select Department and click OK to return to the G/L Balance by Dimension
window:

As you can see this window now displays three totals – one for each department.
Unfortunately, TestUser is only supposed to be able to see the total for the
Administration department. However, the situation is not as bad as it might seem.

In the Total Amount field for the Sales department, click the AssistButton o and the
General Ledger Entries window opens. This window is empty which means that some
of the security filters you have implemented are being applied and TestUser cannot see
the G/L entries for the other departments.

Nonetheless, TestUser is not supposed to be able to see all the totals in the G/L
Balance by Dimension window. To remedy this, you must investigate the code that
this form contains to see if there are any places where the code should be improved so
that it can support security filters.
555

Chapter 29. Supporting Record Level Security
Looking at the code To investigate the code that this form contains:

1 Log on to the database as an administrator and open the G/L Balance by
Dimension window.

2 Click CTRL + F2 to open the form in the Designer.

3 Click View, C/AL Globals to open the C/AL Globals window:

As you can see, this window contains a global variable called GLAcc that refers to the
G/L Account table.

4 Click View, C/AL Code to open the C/AL Editor and see the code that the form
contains:

The first line of code in the OnOpenForm trigger is:

GLAcc.SETPERMISSIONFILTER;

This ensures that any security filters that have been set up for the current user are
applied to this global variable in the code.

However, the matrix form that we are investigating contains functionality that allows
you to change the filters that are used on the data. This means that the filters are
cleared and reset. Furthermore, the C/AL language contains a function called RESET
that is used to clear any filters that are set so that new filters can be set.
556

29.1 Record Level Security
With this in mind, it might be a good idea to see if the code in the G/L Balance by
Dimension form uses the RESET function.

5 Use the Find window to locate all the places where the RESET function is called.

It occurs in two places – in the SetCommonFilters function and in the CalcAmount
function. Both of these are user-defined functions.

6 Take a look at the local variables that have been declared for these functions.

The SetCommonFilter function seems to be the most promising:

As you can see, it contains a parameter that calls the G/L Account table by
reference.

7 Take a closer look at the code in these functions:
557

Chapter 29. Supporting Record Level Security
In the CalcAmount function, you can see that immediately after the code calls the
RESET function on the GLAcc global variable, it calls the SetCommonFilters function.

All of this suggests that the instance of the RESET function that is most relevant to us
is the one that occurs in the SetCommonFilters function.

8 Enter the following code immediately after the RESET function in the
SetCommonFilters trigger:

GLAcc.SETPERMISSIONFILTER;

9 Close, save and compile the form.

10Log on to the database again as TestUser and open the G/L Balance by Dimension
window. Remember to select Department in the Show as Lines field:

The form no longer displays data that belongs to the other departments.

You have now successfully implemented record level security in a posting situation and
ensured that the user only has read access to the data specified by their security filters.
558

Chapter 30

Performance

This chapter covers features built into C/SIDE to increase
performance, such as the DBMS cache, the commit cache
and the command buffer. It also contains a section on how
keys and queries can affect performance.

· The DBMS Cache

· The Commit Cache

· The Command Buffer

· Keys, Queries and Performance

· C/AL Database Functions and Performance on SQL Server

· Configuration Parameters

· Login Stored Procedure on the SQL Server Option

Chapter 30. Performance
30.1 The DBMS Cache

The Database Management System (DBMS) is a memory buffer that stores copies of
portions of the database that the DBMS is currently using. Reading from memory is
much faster than reading from the disk. The DBMS therefore returns a record more
quickly if it is already stored in cache. As long as the required data is stored in cache,
the data appears to be immediately available. When the required data is not stored in
cache, it must be copied from the disk and then stored in cache.

The DBMS cache is transparent to the user. For example, when a client or user requests
data, the data is automatically copied into the cache and stored there. If the data is
modified, it is automatically copied back to the physical disk(s). These data transfers
take place automatically. The user does not need to know about the cache.

The following figure illustrates three clients that send requests to the DBMS. When, for
example, Client 2 sends a request to read data from the database, the request handler
determines whether the desired data can be fetched directly from the cache or whether
it must be fetched from a disk.

At the same time, another client can be modifying a record in a table in the database.
The modified data will be written to the DBMS cache, and not to the disk. When this
client completes the write transaction (that is, commits the changes), the data in the
cache that was modified during the transaction is written to the disk. The cache is then
said to be flushed.

The DBMS cache always contains the most recently used data. The cache is continually
updated with the relevant data from the database.

Client 1 Client 2 Client 3

DBMS

Network

Database

DB Request Handler

Cache

: Data flow

The DBMS cache
560

30.1 The DBMS Cache
The size of the cache greatly affects performance. When you set the size of the cache,
you must remember two simple rules:

• The more memory you assign to the cache, the more efficient it becomes. (Of
course, there is no reason to assign more memory to the cache than the total size of
your database.)

• The size of the cache must not exceed the amount of physical memory available on
your system. This is because it may cause the operating system to swap the cache
memory in and out of the disk. This will considerably slow down the overall speed of
the C/SIDE system.

Note

You must remember to specify the commitcache=yes server parameter in the
command line to enable the caching of write transactions. See the next section for
more information.

See the section "C/SIDE Specifications" on page 577 for information about the
maximum cache size.
561

Chapter 30. Performance
30.2 The Commit Cache

The commit cache is a special write buffer for the disk(s) in the system. The commit
cache has been designed to:

• quickly absorb committed transactions from the DBMS. This frees the DBMS to
perform other tasks.

• enable asynchronous disk writes.
• enable parallel disk read and write operations when multiple disks are used.
• guarantee that the disk file is always consistent.

The commit cache is placed between the DBMS and the database. It absorbs
committed transactions from the DBMS. When the commit cache receives a committed
transaction, it writes the data to the disk(s). Thus the DBMS can perform other tasks
while the commit cache writes to the disk. The data is said to be written
asynchronously to the disk. This is because the disk write does not occur at the same
time as the DBMS commits the transaction.

As described in the section "The Physical and the Logical Database" on page 49, the
logical database can be stored in several distinct disk files (which can be stored on
separate disks). When more than one disk is used to store the database, each of these
disks is controlled by separate commit cache processes, which are linked together to
both enable and control (asynchronous) parallel read and write operations.

The commit cache ensures that the database file is consistent even if a power failure
occurs during a write operation to the disk. However, if a power failure occurs, you lose
all the committed transactions that are currently contained in the commit cache.

Note

You should not use advanced disk caches with delayed write back (sometimes called
lazy write). The use of such cache systems may corrupt your database file(s).

The following figure illustrates a database that is stored on three physical disks. Each
disk is controlled by its own commit cache process. These processes are connected to
enable parallel reading and writing.

DBMS

c: d: f:

Separate
Process
Separate

Process
Separate

Commit cache

Database

 Process

The commit cache
enables
asynchronous
parallel reading and
writing to the disks
in your system.
562

30.3 The Command Buffer
30.3 The Command Buffer

The command buffer only applies to C/SIDE Database Server, and is placed as a link
between your application and the DBMS. It is a temporary storage that can hold
requests (C/AL database commands) sent from your application to the DBMS. The
command buffer has been designed to reduce the number of network transfers when
using C/SIDE in local area network (LAN) environments.

When an application performs a write transaction, some requests such as inserting a
record in a table (using record.INSERT()) need not be sent to the DBMS at once.
They can be temporarily stored in a command buffer. In general, the commands that
don’t have to be sent to the DBMS immediately are the ones that don’t have to return
a value.

Note

The contents of the command buffer are sent to the DBMS when the buffer is full or
when a command requires an immediate response from the DBMS.

The advantage of assembling DBMS commands into packages is that the number of
network transfers is reduced (that is, the load on the LAN is reduced). This is because
the time required to send one DBMS request is comparable to the time used to send an
entire package.

The following C/AL code sample illustrates how the command buffer affects the
number of network transfers.

WHILE Record.FIND('-') DO

Record.DELETE();

Two commands are executed for each record in the table. However, each record causes
only one request to be sent to the DBMS. This is because the DELETE command is
stored in the command buffer until the FIND command is executed.

Debugging The system automatically turns off the command buffer when you activate the C/AL
debugger. This can lead to some confusion if you are not aware of this fact.

The following statements (the complete contents of an imaginary codeunit) illustrate
the difference between running code with and without the debugger:

Customer."No." := '12';

Customer.DELETE();

First := 7;

Second := 0;
Ratio := First / Second;

If there is no Customer with the number 12, a runtime error occurs irrespective of
whether the debugger is active or not. However, the error that occurs will not be the
same. There are two errors here: since the Customer cannot be found, the DELETE will
also fail. Furthermore, the last statement is a division by zero.

When the debugger is inactive, the DELETE command is stored in the command buffer
for execution at a later time. Therefore, a runtime error will occur when the last
statement tries to divide by zero.
563

Chapter 30. Performance
When the debugger is active, the DELETE command is executed immediately. This
causes a runtime error when the record for Customer number 12 cannot be found.
564

30.4 Keys, Queries and Performance
30.4 Keys, Queries and Performance

When you write a query that searches through a subset of the records in a table, you
should always carefully define the keys both in the table and in the query so that
Dynamics NAV can quickly identify this subset. For example, the entries for a specific
customer will normally be a small subset of a table containing entries for all the
customers.

If Dynamics NAV can locate and read the subset efficiently, the time it will take to
complete the query will only depend on the size of the subset. If Dynamics NAV cannot
locate and read the subset efficiently, performance will deteriorate. In the worst case
scenario, Dynamics NAV will read through the entire table and not just the relevant
subset. In a table containing 100,000 records, this could mean taking a few milliseconds
or several seconds to answer the query.

To maximize performance, you must define the keys in the table so that they facilitate
the queries that you will have to run. These keys must then be specified correctly in the
queries.

For example, you would like to retrieve the entries for a specific customer. To do this,
you apply a filter to the Customer No. field in the Cust. Ledger Entry table. In order
to run the query efficiently on SQL Server, you must have defined a key in the table
that has Customer No. as the first field. You must also specify this key in the query.

The table could have these keys:

Entry No.

Customer No.,Posting Date

The query could look like this:

SETCURRENTKEY("Customer No.");

SETRANGE("Customer No.",'1000');

IF FIND('-') THEN

 REPEAT

 UNTIL NEXT = 0;

You should define keys and queries in the same way when you are using C/SIDE
Database Server. However, C/SIDE Database Server can run the same query almost as
efficiently if Customer No. is not the first field in the key. For example, if you have
defined a key that contains Country/Region Code as the first field and Customer
No. as the second field and if there are only a few different country/region codes used
in the entries, it will only take a little longer to run the query.

The table could have these keys:

Entry No.

Country/Region Code, Customer No.,Posting Date

The query could look like this:

SETCURRENTKEY("Country/Region Code","Customer No.");

SETRANGE("Customer No.",'1000');

IF FIND('-') THEN

 REPEAT

 UNTIL NEXT = 0;
565

Chapter 30. Performance
But SQL Server will not be able to answer this query efficiently and will read through
the entire table.

In conclusion, SQL Server makes stricter demands than C/SIDE Database Server on the
way that keys are defined in tables and on the way they are used in queries. You should
therefore define your keys and queries with SQL Server in mind, as this will ensure that
your application can run just as efficiently on both server options.
566

30.5 C/AL Database Functions and Performance on SQL Server
30.5 C/AL Database Functions and Performance on SQL Server

The fastest SQL statement that Dynamics NAV sends to SQL Server runs slower than
most database functions on C/SIDE Database Server. However, one SQL statement can
sometimes cover several database server calls. The following section describes the
relationship between some basic database functions in C/AL and SQL statements.

Each GET (or FIND('=')) requires a separate SQL statement, unless the client has
already retrieved the record in question during a recent operation. This means that if
the client reads the same record several times, SQL Server will only be called the first
time that the client needs to read the record.

Each FIND('-/+') requires a separate SQL statement, unless the client has executed
the same query (filters etc.) in a recent operation.

Each NEXT (or FIND('>/<')) requires at least one, but often several, SQL statements.
However, when NEXT is used together with FIND('-/+') to read a set, as shown in the
following example, one SQL statement can cover the needs of all the NEXT function
calls in the loop:

IF FIND('-') THEN
 REPEAT
 UNTIL NEXT = 0;

Reading the set backwards with FIND('+')/NEXT(-1) or using "ASCENDING :=
FALSE" is equally efficient. You should not read record sets by using "WHILE FIND('-
/+') DO" or any similar constructions.

Each CALCFIELD/CALCSUMS that calculates a sum requires a separate SQL statement,
unless the client has calculated the same sum or another sum that uses the same
SumIndex, filters etc., in a recent operation. In other words, totals for all the
SumIndexFields in a SumIndex are calculated when a sum is required for one of them,
and all the sums are stored in the client's cache.

Each INSERT/MODIFY/DELETE requires a separate SQL statement. If the table that you
modify contains SumIndexes, the operations will be considerably slower. As a test,
select a table that contains SumIndexes and execute a hundred of these
INSERT/MODIFY/DELETE operations to measure how long it takes to maintain the
table and all its SumIndexes.

LOCKTABLE does not require any separate SQL statements. It only causes any
subsequent reading from the table to lock the table or parts of it.

Database Administration, Object Design and Performance on SQL Server
It is much slower to create tables and companies on SQL Server than on C/SIDE
Database Server. Similarly, translating and renaming tables and fields are slower on SQL
Server.
567

Chapter 30. Performance
30.6 Configuration Parameters

You can configure a Dynamics NAV database by creating a SQL Server table
configuration parameter table and entering parameters into the table that will
determine some of the behavior of Dynamics NAV when it is using this database.

In the database create a table, owned by dbo:

CREATE TABLE [ndodbconfig] (config VARCHAR(512) NOT NULL)

GRANT SELECT ON [ndodbconfig] TO public

(You can add additional columns to this table, if necessary. The length of the config
column should be large enough to contain the necessary configuration values, as
explained in the following, but need not be 512.)

There is one record in this table for each parameter that is required.

The following sections describe the parameters that you can enter into this table.

Index Hinting
It is possible to force SQL Server to use a particular index when executing queries for
FIND('-'), FIND('+'), FIND('=') and GET statements. This can be used as a
workaround when SQL Server's Query Optimizer picks the wrong index for a query.

Index hinting can help avoid situations where SQL Server’s Query Optimizer chooses an
index access method that requires many page reads and generates long-running
queries with response times that vary from seconds to several minutes. Selecting an
alternative index can give instant 'correct' query executions with response times of
milliseconds. This problem usually occurs only for particular tables and indexes that
contain certain data spreads and index statistics.

In the rare situations where it is necessary, you can direct Dynamics NAV to use index
hinting for such problematic queries. When you use index hinting, Dynamics NAV adds
commands to the SQL queries that are sent to the server. These commands bypass the
normal decision making of SQL Server's Query Optimizer and force the server to
choose a particular index access method.

Note

This feature should only be used after all the other possibilities have been exhausted,
for example, updating statistics, optimizing indexes or re-organizing column order in
indexes.

The index hint syntax is:

IndexHint=<Yes,No>;Company=<company name>;Table=<table

name>;Key=<keyfield1,keyfield2,...>; Search Method=<search method
list>;Index=<index id>

Each parameter keyword can be localized in the "Driver configuration parameters"
section of the .stx file.
568

30.6 Configuration Parameters
The guidelines for interpreting the index hint are:

• If IndexHint=No, the entry is ignored.
• All the keywords must be present or the entry is ignored.
• If a given keyword value cannot be matched the entry is ignored.
• The values for the company, table, key fields and search method must be

surrounded by double-quotes to delimit names that contain spaces, commas etc.
• The table name corresponds to the name supplied in the Object Designer (not the

Caption name).
• The key must contain all the key fields that match the required key in the Keys

window in the Table Designer.
• The search method contains a list of search methods used in FIND statements, that

must be one of '-', '+', '=', or '!' (for the C/AL GET function).
• The index ID corresponds to a SQL Server index for the table: 0 represents the

primary key; all other IDs follow the number included in the index name for all the
secondary keys. Use the SQL Server command sp_helpindex to get information
about the index ID associated with indexes on a given table. In this example we are
looking for index information about the Item Ledger Entry table:

sp_helpindex 'CRONUS International Ltd_$Item Ledger Entry'

When Dynamics NAV executes a query, it checks whether or not the query is for the
company, table, current key and search method listed in one of the IndexHint entries. If
it is, it will hint the index for the supplied index ID in that entry.

Note that:

• If the company is not supplied, the entry will match all the companies.
• If the search method is not supplied, the entry will match all the search methods.
• If the index ID is not supplied, the index hinted is the one that corresponds to the

supplied key. This is probably the desired behavior in most cases.
• If the company/table/fields are renamed or the table's keys redesigned, the

IndexHint entries must be modified manually.

Here are a few examples that illustrate how to add an index hint to the table by
executing a statement in Query Analyzer:

Example 1

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item
Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
FIND('-') and FIND('+') statements when the Item No.,Variant Code key is set as the current
key for the Item Ledger Entry table in the CRONUS International Ltd. company.

Example 2

INSERT INTO [ndodbconfig] VALUES
569

Chapter 30. Performance
('IndexHint=No;Company="CRONUS International Ltd.";Table="Item
Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=3')

The index hint entry is disabled.

Example 3

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=')

This will hint the use of the Item No.,Variant Code index of the CRONUS International Ltd_$Item
Ledger Entry table for FIND('-') and FIND('+') statements when the Item No.,Variant Code
key is set as the current key for the Item Ledger Entry table in the CRONUS International Ltd.
company.

This is probably the way that the index-hinting feature is most commonly used.

Example 4

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company=;Table="Item Ledger Entry";Key="Item
No.","Variant Code";Search Method="-+";Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
FIND('-') and FIND('+') statements when the Item No.,Variant Code key is set as the current
key for the Item Ledger Entry table for all the companies (including a non-company table with this
name) in the database.

Example 5

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method=;Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
every search method when the Item No.,Variant Code key is set as the current key for the Item
Ledger Entry table in the CRONUS International Ltd. company.

Lock Granularity
When Dynamics NAV is reading data from tables it places forced ROWLOCK hints, by
default. These rowlock hints prevent SQL Server from automatically determining the
granularity (row, page or table) of the locks that it places. This can lead to a high
locking overhead on the server, even though concurrency is optimum.

To allow SQL Server to determine the granularity of the locks that it places, the
DefaultLockGranularity parameter can be used in the database configuration
table.
570

30.6 Configuration Parameters
The syntax of the DefaultLockGranularity parameter is:

DefaultLockGranularity=<Yes,No>

When the parameter is Yes, SQL Server will choose the granularity of the locks that it
places. When the parameter is No, Dynamics NAV will override SQL Server and place
ROWLOCKs.
571

Chapter 30. Performance
30.7 Login Stored Procedure on the SQL Server Option

A login stored procedure is a stored procedure that you can use to perform predefined
functions after a user logs on to the SQL Server Option. A typical function would be to
generate a message informing the user that the database is currently in single-user
mode so that an administrator can perform some database maintenance tasks and is
therefore inaccessible.

The login stored procedure is run immediately after the user has logged on to SQL
Server and opened a database and before Dynamics NAV carries out any tasks
including executing any C/AL triggers. The user must have successfully logged on to
the server and have access to the database before the stored procedure is run.

Creating the Stored Procedure
The stored procedure is created in the database and has a predefined name and a list
of parameters.

The stored procedure is called [ndodbproperty] and has the following
characteristics:

• It takes two VARCHAR parameters: the name of the application and the C/SIDE
version number. These parameters must be declared as part of the stored procedure
but do not have to be used.

• It can perform transactions. Dynamics NAV uses a COMMIT to flush any outstanding
transactions after the stored procedure has finished executing.

• The RAISERROR statement can be used to display an error message in Dynamics
NAV and prevent the user from accessing the database.

• The PRINT statement can be used to display a warning in Dynamics NAV and allow
the user to access the database.

• If the stored procedure returns a value, it is ignored.
• If the stored procedure does not exist, no action is taken by Dynamics NAV and the

login process continues normally.

The following examples show how to create a login procedure in the Query Analyzer
tool. The database must be selected before these statements are executed.

Example 1

Displaying a warning message in Dynamics NAV and permitting the login:

IF EXISTS (SELECT name FROM sysobjects

WHERE name = 'sp_ndologinproc' AND type = 'P')
DROP PROCEDURE [sp_ndologinproc]

GO

CREATE PROCEDURE [sp_ndologinproc]
@appname VARCHAR(64) = NULL,

@appversion VARCHAR(16) = NULL

AS
BEGIN

PRINT 'The system will be unavailable on Sunday 1st April.'

END
572

30.7 Login Stored Procedure on the SQL Server Option
GO
GRANT EXECUTE ON [sp_ndologinproc] TO public

GO

Example 2

Displaying an error message in Dynamics NAV and disallowing the login

IF EXISTS (SELECT name FROM sysobjects

WHERE name = 'sp_ndologinproc' AND type = 'P')

DROP PROCEDURE [sp_ndologinproc]
GO

CREATE PROCEDURE [sp_ndologinproc]

@appname VARCHAR(64) = NULL,
@appversion VARCHAR(16) = NULL

AS

BEGIN
IF SUSER_SNAME() IN ('ACCOUNTS\jim', 'SALES\bill')

RAISERROR ('Please contact the system administrator.', 11, 1)

END
GO

GRANT EXECUTE ON [sp_ndologinproc] TO public

GO
573

Chapter 30. Performance
574

Part 12
Appendixes

Appendix A
C/SIDE Specifications

This appendix provides the technical specifications of
C/SIDE. Use this information to get an overview of
maximum sizes and other limitations that may affect your
application design.

· Specifications for the DBMS

· Specifications for C/SIDE Application Objects

.
A.1 Specifications for the DBMS

These are the specifications for the C/SIDE DBMS (Database Management System).

Maximum number of physical disk files 16

Database file size 256 GB

Maximum number of objects in a database Infinite

Maximum number of characters in application object names 30

Maximum number of characters in a password 10

Maximum number of concurrent users
(the actual limit depends on your hardware and the workload)

500

Maximum cache size 1GB
578

A.2 Specifications for C/SIDE Application Objects
A.2 Specifications for C/SIDE Application Objects

This section lists specifications for the five types of application objects in a C/SIDE
database.

Specifications for Tables

(A) all application objects are identified by an ID number. there are restrictions, however, on the
numbers you can use when you create your own application objects. Please contact your NTR for
more information.

Range for table object ID numbers 1 -999,999,999 (A)

Maximum number of characters in a table name 30

Maximum table size Infinite

Maximum number of records in a table Infinite

Maximum record size 4KB (C/SIDE Database Server), 8KB (SQL Server)

Maximum number of fields in a record 500

Range for field numbers 1 - 999,999,999

Maximum number of keys for a table 40

Maximum number of distinct fields per key 20 for a primary key. The number of fields in the
primary key + the number of fields in a
secondary key which do not occur in the primary
key must always be less than or equal to 20.

Maximum number of SumIndexFields per key 20

Maximum number of characters in a text or code
field

250

Maximum size of a BLOB field 2 GB

Maximum number of characters in a field name 30
579

.
Specifications for Forms and Reports

(A) all application objects are identified by an ID number. there are restrictions, however, on the
numbers you can use when you create your own application objects. Please contact your NTR for
more information.

Specifications for Codeunits

(A) all application objects are identified by an ID number. there are restrictions, however, on the
numbers you can use when you create your own application objects. Please contact your NTR for
more information.

Range for form or report object ID numbers 1 - 999,999,999 (A)

Maximum form width 100000 x 1/100 mm

Maximum form height 100000 x 1/100 mm

Maximum number of nested forms 1

Maximum number of controls on a form 32767

Maximum number of characters in a label 254

Maximum number of characters in a text box 250

Maximum bitmap size in bitmap property 32500 bytes

Maximum number of levels in drop-down
menus

10

Range for table object ID numbers 1 - 999,999,999 (A)

Maximum number of characters in variable names 30

Maximum number of dimensions in array variables 10

Maximum number of elements in an array variable 1,000,000

Maximum physical size of a codeunit 2 GB

Lower bound of index in an array 1
580

Appendix B
Report Flow Charts

This appendix illustrates the flow of control for reports in
C/SIDE.

· Report Flow Charts

· Report.Run

· DataItem.Run

· Section.Run

· Header.Run

· Footer.Run

· TransHeader.Run

· TransFooter.Run

· GroupHeader.Run

· GroupFooter.Run

· Body.Run

· NewPage

· GetRecord

.
B.1 Report Flow Charts

The following sections contain flow charts that show the flow of control for reports in
C/SIDE.

As indicated by the following legend, some processes in one flow chart are "exploded"
in the following pages in order to show more details.

Legend

Entry point

Exit

Process

Process with subpages

BWT Begin Write Transaction

EWT End Write Transaction
582

B.2 Report.Run
B.2 Report.Run

Report.Run

DataItem.Run

OK

No more

Call PreReport
Trigger

OK / Print / Preview

Get Next DataItem

Call PostReport
Trigger

ReqForm.Run

Cancel

Set DataItem
ReqFilters

Clear DataItem
Filters

BWT

EWT

PageNo=1

Call Init
Trigger

Set DataItem
TableViews
583

.
B.3 DataItem.Run

DataItem.Run

(OnlyFirst)

Header.Run

GroupHeader.Run

Body.Run

DataItem.Run

GroupFooter.Run

(OnlyLast)

Footer.Run

Set DataItem
TableView

TotalArray:
Append Group/
Grand totals

Set DataItem
ReqFilter

Call PreDataItem
Trigger

Call PostDataItem
Trigger

TotalArray:
Update Group/
Grand totals

GetRecord

Get next lower
DataItem

NextRec =
GetNextRec(Curr

Rec)

Clear DataItem

TotalArray:
Clear Totals

Property:
PrintOnlyIfDetail

CurrRec = OldRec

TotalArray:
SwapTotal

(GrandTotal)

Skip / Break Property:
PrintOnlyIfDetail

NextRec = NULLNo more

OK

Break

No

False

No more

OK

False
Skip

Property:
NewPagePerRecord

NewPage

False

True

RollBackTrue

HoldTrue

Transfer DataItem
Link
584

B.4 Section.Run
B.4 Section.Run

Enough

Not Enough

Section.Run (Transport)

(Param:
Transport)

NewPage

Calculate Space
Need

Call PreSection
Trigger

Call PostSection
Trigger

Print Section

Get Next Section

OK

No More
585

.
B.5 Header.Run

Header.Run (IncludeBack,UsePrintOnEveryPage,OnlyFirst)

(IncludeBack)

Back.Header.Run

Param:
IncludeBack

Param:
UsePrintOnEvery

Page

Property:
PrintOnEveryPage

Section.Run

True

False

True

False
True

OldRecParam:
OnlyFirst True Not

NULL

False

False

Hold

NULL
586

B.6 Footer.Run
B.6 Footer.Run

Section.Run

True

False

Footer.Run (IncludeBack,UsePrintOnEveryPage,OnlyLast)

Property:
PlaceInBottom Move to Bottom

Param:
UsePrintOnEvery

Page

Property:
PrintPnEveryPage

Param:
IncludeBack

(IncludeBack)

Back.Footer.Run

True

True
False

True

False

TotalArray:
SwapTotal

(GrandTotal)

TotalArray:
SwapTotal

(GrandTotal)

Param:
OnlyLast NextRecTrue

False
NULL

Not
NULL

Not
NULL

Param:
OnlyLast NextRecTrue

RollBack

NULL

False

False
587

.
B.7 TransHeader.Run

Param:
IncludeBack

(IncludeBack)

Back.Trans
Header.Run

True

Section.Run

False

TransHeader.Run (IncludeBack)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec

Not NULL

NULL
588

B.8 TransFooter.Run
B.8 TransFooter.Run

Section.Run

Param:
IncludeBack

(IncludeBack)

Back.Trans
Footer.Run

False

True

TransFooter.Run (IncludeBack)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec

Not NULL

NULL
589

.
B.9 GroupHeader.Run

Section.Run

OK

Changed

Not
Changed

GroupHeader.Run

No more
Get next

GroupTotalField
(forward in key)

Check
GroupTotalField
(OldRec-CurrRec)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec
Property:

NewPagePer
Group

NewPage

Not
NULL True

NULL False

Hold
590

B.10 GroupFooter.Run
B.10 GroupFooter.Run

(Transport)

Section.Run

Changed

No
more

Not
Changed

OK

GroupFooter.Run

Get next
GroupTotalField
(backward in key)

Check
GroupTotalField

(CurrRec-NextRec)

TotalArray:
SwapTotal

(GroupTotal)

TotalArray:
SwapTotal

(GroupTotal)

TotalArray:
GroupChange

RollBack
591

.
B.11 Body.Run

(Transport)

Section.Run

Body.Run

Property:
PrintOnlyIfDetail True

Commit

False
592

B.12 NewPage
B.12 NewPage

(IncludeBack)

TransFooter.Run

(IncludeBack)

TransHeader.Run

(IncludeBack)
(UsePrintOnEvery

Page)

Footer.Run

(IncludeBack)
(UsePrintPn
EveryPage)

Header.Run

NewPage (Transport)

PageBreak

Increment PageNo

Param:
Transport True

False

Param:
Transport True

False
593

.
B.13 GetRecord

OldRec = CurrRec

CurrRec =
GetNextRec
(CurrRec)

Auto Calculate
FlowFields

Call
AfterGetRecord

Trigger

OK

No
more

No
more

OK

GetRecord

Break

Yes

No

Skip = No
Break = No

TotalArray:
ClearTotalVars
594

Appendix C
Dataport Flow Charts

This appendix illustrates the flow of control for dataports in
C/SIDE.

· Dataport Flow charts

· Dataport.Import/Export

· DataItem.Export

· VariableRecord.Export

· FixedRecord.Export

· DataItem.Import

· VariableRecord.Import

· FixedRecord.Import

.
C.1 Dataport Flow charts

The following sections contain flow charts that show the flow of control for dataports in
C/SIDE.

As indicated by the legend, some processes in one flow chart are "exploded" in the
following pages in order to show more details.

Legend

BWT

Entry point

Exit

Process

Process with subpages

BWT Begin Write Transaction

EWT End Write Transaction
596

C.2 Dataport.Import/Export
C.2 Dataport.Import/Export
597

.
C.3 DataItem.Export
598

C.4 VariableRecord.Export
C.4 VariableRecord.Export

GetNextField Format

Call
AfterFormatField

Trigger

Out BeginField
Delimiter

Out Field

Out EndField
Delimiter

Out Record
Separator
(Not first)

No more

OK

Break Skip

VariableRecord.Export

Out Field
Separator
(Not first)
599

.
C.5 FixedRecord.Export

Clear LineBuffer

Out Record
Separator
(not first)

Get Next Field Format

Call
AfterFormatField

Trigger

Put Field in
LineBuffer

Out LineBuffer

No more

OK

SkipBreak

FixedRecord.Export
600

C.6 DataItem.Import
C.6 DataItem.Import
601

.
C.7 VariableRecord.Import

Get Next Field

In Record
Separator

(If not DataItem
separator or EOF)

Call
BeforeEvaluateFie

ld Trigger

In BeginField
Delimiter
(If any)

In Field

In EndField
Delimiter
(If any)

Evaluate Field

No more

OK

Skip

VariableRecord.Import

Break

In Field Separator
(If not Record

sep. or DataItem
sep. or EOF)

Validate Field
602

C.8 FixedRecord.Import
C.8 FixedRecord.Import

In Fixed Record to
LineBuffer

Get Next Field Get Filed from
LineBuffer

Call
BeforeEvaluateField

Trigger

Evaluate Field

Validate Field

In Record Separator
(If not DataItem

Separator or EOF)

No more

OK

Break Skip

FixedRecord.Import

Get Field from
LineBuffer
603

.
604

Appendix D
NDBCS – The Database Driver

This appendix describes some details of the way that the
database driver module (NDBCS) for the SQL Server Option
for Dynamics NAV has been implemented. Although it is not
a guide for C/AL development, it can help you understand
the way Dynamics NAV uses SQL Server. This appendix also
contains a brief history of the performance improvements
that have been implemented for the SQL Server Option.

This appendix contains the following sections:

· NDBCS – the Database Driver

· A Brief History of Performance Improvements

.
D.1 NDBCS – the Database Driver

The database driver maps internal database requests, that have been formulated for
the architecture used by C/SIDE Database Server, to SQL-based requests to SQL Server.
This is done for all the types of requests that must communicate with the database
server, including:

• Connecting, setting connection properties and disconnecting from the server.
• Opening, creating and altering databases.
• Redesigning tables and managing linked objects such as views.
• Reading data for all the objects in the form, report, and dataport engines.
• C/AL functions such as FIND, MODIFY and so on.
• FlowFields.
• Statistics for databases, sessions and tables.
• Sort Order, Character Set and Code Page considerations (Collations).

Most of the SQL statements that are used to achieve this mapping are constructed in a
dynamic manner where everything but the basic syntax of the statement is unknown
until runtime. For example, the table name, field list, lock type, filter parameters and
the ordering are all dependent on the C/SIDE area or application area that is being
used. In some cases, such as database redesign, table redesign and SIFT queries, the
syntax itself varies considerably.

This is in contrast to the majority of SQL applications that use pre-defined business
logic in the form of query repertoires, statement batches and stored procedures.
Although these elements can be parameterized, they are essentially static in nature and
allow a great deal of optimization to be incorporated, both at the time they are
designed - by fully exploiting the power of the SQL language - and at the time they are
executed - by allowing the server to pre-build internal structures such as compilation
plans, execution plans, intermediate working tables and buffers for caching.

The Dynamics NAV Client Monitor can be used to display the SQL statement that is
used for the current database operation, regardless of its origin. The SQL statement
could originate from, for example, a C/AL function or a form. The Client Monitor
displays the SQL statement in a slightly more readable layout than that used internally.
When the driver issues more than one statement for an operation, only the first
statement is displayed in the Client Monitor. However, this is not very common.

The SQL Profiler can also be used to display the SQL statements being received by the
server in more detail. Although the SQL Profiler gives you more information, it is not
easy to track the statements back to database behavior in Dynamics NAV, and in many
cases internal stored procedures, and other mechanisms, are being used (by both the
SQL Server ODBC driver and the server itself) in place of the original SQL statements.

If you want to understand how SQL Server is being utilized by Dynamics NAV, or why
there may be a functional or performance problem, you should use one of these tools
to analyze database activity.

The following sections contain details about some of the more important areas of the
database driver. These areas are particularly concerned with performance and the
ability to use SQL Server as optimally as possible, given the nature of the C/AL
application language that must be used for both server platforms.
606

D.1 NDBCS – the Database Driver
Database Driver Concepts
This section explains some of the most important database driver concepts and terms.

Command
In this context a command is a driver object that is used for executing any SQL
statement and has built in error handling and can use parameterization.

Direct and Prepared Execution
When a SQL statement is executed it can use either a direct execution or a prepare-
execute model.

The Prepare-Execute Model
The prepare-execute model is a general model that allows for the optimization of
statements that are frequently executed. The preparation stage is performed once, and
this establishes server-specific data structures – typically compilation or execution
plans. The execute stage is then performed repeatedly, using the created data
structures. For example, the preparation of an INSERT statement is followed by
multiple executions of the prepared statement, with different parameter values
(different records being inserted into the table).

The Direct Execution Model
Direct execution performs all the work necessary for preparing and executing on the
server, in one step. Therefore, it takes longer to issue the statement several times
because it must be prepared and executed each time. SQL Server has increased the
performance of direct execution by internally matching its data structures and re-using
them. However, it is still faster to use the prepare-execute model when you know that a
statement will be re-executed.

Result Set
A result set is the set of records returned from the server to a client application, such as
Dynamics NAV, in response to a query. The query is usually a SQL SELECT statement or
a stored procedure. The set can include 0, 1 or more records. A default result set is the
fastest and most efficient way for the server to send the results. This is sometimes
referred to as a fire hose, taken from the analogy of water being sprayed at high power
onto the 'client'. A cursor can also be used for sending a result set, but is less efficient
because it supports additional features on top of the result set.

SQL Server places an important limitation on the use of default result sets:

• There can be only one default result set active on a given client connection, for
example, a single instance of Dynamics NAV that has opened a database.

This means that once the server starts sending a particular result set to a client, the
client must read the entire set to the end, close the set before reading to the end, or
cancel the request. The client cannot partially read from the set and then perform
another activity, such as request a new set for a different query or make modifications
to a table. This makes the use of default result sets quite limited for the database driver
because it must track many result sets for different clients at the same time, in response
to read requests for different record variables, for example. The database driver uses
cursors to do this. For queries that are known to produce 0 or 1 record only (singleton
queries) such as a GET or SIFT queries, the driver always uses a default result set since it
607

.
can be opened, the data read, and closed within the same Dynamics NAV database
operation and does not remain active.

Cursor
In general, a cursor is a data structure that allows the result set of a query to be
navigated and manipulated, with some additional features other than that of merely
reading the results from beginning to end. The cursor can be viewed as an additional
layer on top of the result set. When a cursor is used to retrieve data, the result set is no
longer said to be a default result set. Cursors were designed primarily to allow
applications that deal with single record retrieval (such as Dynamics NAV) to use result-
based SQL databases.

The most commonly used features are the ability to:

• Maintain a current record position in the results.
• Scroll backwards or jump around in the set.
• Modify or delete the record at the current position.

In the driver, it is essential to use cursors to overcome the limitation imposed by SQL
Server of having only one active default result set on a client connection (see Result
Set). Cursors allow many result sets to be active (in an open state) so that many read
requests on different tables, with various keys and filters, can be serviced efficiently
when running a codeunit, for example. Otherwise the driver does not need to make use
of the variety of features that cursors offer.

The following cursor types are available in SQL Server and are listed in order of their
reading efficiency (the fastest being the default result set, which is not classed as a
cursor):

There are several requirements that must be met when requesting a particular cursor
type (the driver requests the fastest possible cursor for the given inputs), in order for
the server to provide the cursor type. If the requested cursor type cannot be created, an
alternative type is offered that has less requirements but is often less efficient.

In some cases the driver does not know if a cursor type cannot be provided, because it
is too costly to determine if all the requirements can be met, such as the existence of
the correct indexes. In other situations it knows in advance that a particular cursor type
cannot be used. For example, the driver never requests a Fast Forward cursor for a table
that has been locked because this will never be provided. In this case, a dynamic cursor
is used instead. The server can always supply a dynamic cursor for Dynamics NAV (non-

Type Properties Basic Requirements

Fast Forward Read-only, forward-only, latest data
at fetch time

No locking, no BLOB columns

Dynamic Updateable, scrollable, latest data at
fetch time

An index must match ordering

Keyset Updateable, scrollable, snapshot at
creation time and partially latest data
at fetch time

A primary key

Static Updateable, scrollable, snapshot at
creation time

None
608

D.1 NDBCS – the Database Driver
linked) tables, provided that the MaintainSQLIndex key property is set to Yes and the
indexes have not been modified outside of the program.

The driver never uses the scrollable or updateable properties of cursors. Only a limited
number of cursors can co-exist in the driver because they are a more expensive client
and server-side data structure in terms of memory-usage, and sometimes disk-usage
than default result sets.

Rowset
A rowset is an internal driver object that is used for data retrieval. A rowset is based on
a driver command object. It always encapsulates a result set and can also use a cursor,
depending on the database operation that caused the rowset to be created.

The rowset contains:

• The SQL SELECT statement to be executed.
• The table, output field list, filter, parameter values and ordering.
• The data for the records that are returned.
• The status of each record (normal, deleted, and so on).
• The current record position in the record buffers.
• The result set state (open, closed, read full set, performed a NEXT, and so on).
• Statistics about the usage of the rowset since it was created.
• The cursor type, locking, and other attributes.
• Caching information.

When a rowset is created, the following attributes are fixed:

• The table.
• The output field list.
• The ordering of the results (based on the current key).
• The filter fields and operators (but not the filter values).
• The search method being used for the database request.
• The locking status.
• The cursor type.
• The number of initial result set record buffers allocated in memory (the number of

actual buffers can grow, and later shrink back to this initial size).

Rowsets are maintained both for every table and for every connection. When searching
for an existing rowset to be used for a request, only the rowsets for the table involved
are examined. When searching for rowsets that should be deleted because they have
expired or to allow new rowsets to be created, all the rowsets for the connection are
examined. When a table handle is closed by C/SIDE, for example, because of error
conditions or table re-designs, the rowsets it owns are also deleted.

Transaction Type
See the C/SIDE Reference Guide online Help.
609

.
Reading Data: Rowset Usage
The database driver uses a rowset object to read data from the database. This involves
creating a new rowset object or utilizing an existing one. After it has been created, the
rowset object usually undergoes the following operations:

• The current filter parameter values are used and the data is converted from a C/SIDE
format to a SQL format.

• If the result set is open, it is closed.
• It is determined whether the rowset is caching data or not and if this cache can be

used instead of executing the statement.
• It is determined whether the filter will give an empty set or not.
• The SQL statement is executed. It might need to be prepared first.
• It is determined whether or not the result set field list is compatible with the C/SIDE

field list.
• A number of records are fetched from the network buffers or from the server (this

step is often performed as part of the execution phase) and placed in the record
buffers.

• If no records are found, this situation must be handled. Finding no records might be
the expected result of the database operation or it might be an error. The result set
is closed here.

• If records were found, the required record position based on the database operation
must be obtained. This may require more fetches.

• If the required record was not found with this rowset and there are more records
available in the logical set, a new rowset is used to continue the search and the
current rowset is deleted.

• If the required record is found, the data is converted from a SQL format to a C/SIDE
format.

• The status of the database operation, and the record data, is now available to the
C/SIDE database layer, and to the area of Dynamics NAV that made the request.

After a rowset has been created and executed in this way, it can be re-used for
subsequent operations. For example, a rowset created to satisfy a FIND('-') will be
used to satisfy the subsequent NEXT, provided that all the required rowset attributes
are compatible (for example, the table lock status for the FIND is the same as the table
lock status for the NEXT). The remaining records might have been fetched into memory
already, or further fetches might be required. If the current record in the rowset
matches the input record of the NEXT, the next record is provided as output, and so on
until no more records are found.

This mechanism of re-using rowsets is essential in the driver. It allows existing server
execution plans and statement handles to be used when re-executing a rowset
statement using prepared statements, and allows fetch operations on open result sets
to be used thereby avoiding having to re-execute statements. In many situations it also
allows cached data in the rowsets to be used without having to visit the server at all.
When a filter is used in a request, the filter is parameterized in the rowset and the SQL
statement so that different filter values can re-use the same rowset by re-executing the
same statement with the new values. If anything other than the filter values are
changed (for example, an operator is changed from = to >), the rowset cannot be
reused. Therefore, when a NEXT operation is being performed, the filter for the rowset
610

D.1 NDBCS – the Database Driver
that is being re-used must match exactly the active filter for the NEXT operation or the
rowset cannot be reused.

Almost every rowset can be re-used to exploit the set-based behavior of SQL Server.
The Client Monitor can display additional SQL Status information that shows if a rowset
has been re-used for a particular operation and how many times it has been used since
it was created. For more information about the Client Monitor, see "The Monitor Virtual
Table" on page 121.

Executing even the simplest query in SQL Server to obtain a record is more expensive
than retrieving a single record in C/SIDE Database Server. This is mainly due to the
power of the SQL Query Optimizer, which carries additional baggage when executing
simple queries because it is able to efficiently handle complex queries. Dynamics NAV
generally executes simple queries. There is no SQL optimizer in C/SIDE Database Server
because the server does not support the SQL language and therefore this added
overhead is not present. The performance section of this document presents the
mechanisms that are employed to reduce the expense of retrieving records on SQL
Server.

Modifying Data
When data is to be modified in the database, the appropriate SQL statement (INSERT,
DELETE or UPDATE) is issued using a driver command object. This means that either a
new object must be created or an existing object utilized, as is the case with a rowset.
The re-using of command objects for modifications allows the prepare-execute model
to be employed in a parameterized statement. The prepare-execute model is an
optimal mechanism for issuing these statements. The driver creates and re-uses the
following commands (maintained within the table):

When modifications are performed on a table with SumIndexFields, the SIFT trigger on
the SQL table is fired to update the accompanying SIFT tables.

When performing a MODIFY, the record to be modified is first read from the database
table (or a client cache). This allows a comparison to be made between this record and
the record values that are being modified. Only those fields that have been changed
will be included in the SQL UPDATE statement thereby improving performance.

The timestamp field in the table is used when an optimistic concurrency check must be
performed to determine if the record in the table has been changed since the driver
read it. Timestamp fields are assigned a unique value when a record is inserted into a
table in SQL Server, and the timestamps are updated automatically whenever the
record is changed. The driver always reads the timestamp value when it reads a record.

C/AL Function SQL Statement Properties

INSERT INSERT 1 per table

DELETE DELETE per-connection limit

MODIFY UPDATE per-connection limit

DELETEALL DELETE with filter per-connection limit

MODIFYALL UPDATE with filter per-connection limit

INSERT (bulk) 1 per table, batched, used during bulk inserts
611

.
The driver reads the timestamp when performing a DELETE or MODIFY but this check is
not performed when performing DELETEALL or MODIFYALL. If the timestamp is greater
than it was when the driver read the record, a standard Dynamics NAV error message is
displayed.

Transactions
C/SIDE tracks transactions at several levels and these can vary from the points at which
C/AL code may begin, commit or rollback transactions. Most of the additional
complexity in transactions has been implemented to optimize the point at which the
server really needs to begin or end a transaction boundary, and therefore avoid
creating unnecessary transactions.

The driver manages transactions in the following way:

• A SQL Server setting is enabled so that every SQL statement will begin a transaction
implicitly. This avoids having to send manual begin markers.

• Different C/SIDE Transaction Types use different transaction isolation levels. In SQL
Server, isolation levels determine the default locking behavior of all the data
accessed, but the driver sometimes overrides the locking behavior when executing
particular SQL statements.

• Isolation levels are not changed until it is necessary. For example, if there is no
locking in a transaction, no change in isolation level takes place.

• No commit or rollback is issued to the server if no locking has been performed in a
transaction.

• Cursors that have no locks placed (that is, cursors belonging to tables that have not
been locked) are left open when a transaction is committed.

• C/SIDE makes use of outer and inner transactions. An outer transaction is the first
transaction that takes place when the Transaction Type is changed from Browse, for
example when running a report. Inner transactions are those that end with a
COMMIT, for example, within the report, before the end of the outer transaction. The
driver is given information about the outer and inner transactions in order to
determine when rowsets should be closed and when data caches should be purged.

SIFT
SIFT stands for sum index field technology. SumIndexFields allow sums of numbers that
are stored in columns in tables to be calculated quickly – even when the table contains
several thousand records. Each time you change the contents of a field in a column, the
accumulated value is updated. The sum is updated continuously, so the program does
not need to add all the entries together – it can simply add the newest figure to the
sum that is already calculated. The updated sum can be seen every time you open a
window, which contains a FlowField or set a filter on a balance field.

FlowFields are used to display amounts and quantities that must always be up-to-date.
The calculation can be based on information that is stored in tables other than the one
that contains the FlowField. FlowFilters are used to determine how much information
the system will include when it calculates the contents of FlowFilters.

However, SIFT has been implemented very differently in the SQL Server Option for
Dynamics NAV. This implementation involves creating a new table on SQL Server for
every SumIndexFields that exists in a Dynamics NAV database table. The totals in the
612

D.1 NDBCS – the Database Driver
SumIndexFields are therefore calculated in SQL Server tables. This means that there are
more tables that must be updated and more filters that must be applied.

This can in turn result in poor performance. Therefore you should not create any
FlowFields unless they are necessary and you should also give serious consideration to
the design of any indexes and filters that you are going to implement. For example,
you must give the SumIndexFields a unique name because SQL Server will create a
table that is named after this field. No two objects can have the same name in
Dynamics NAV.

For more information, see the section SIFT and the SQL Server Option for Dynamics
NAV on page 486.
613

.
D.2 A Brief History of Performance Improvements

The database driver has become increasingly complex because of the continuing need
to improve performance.

The Features and The Versions
This section contains details of the features that have been introduced to optimize
performance, including the version of Dynamics NAV in which the changes were
introduced.

Parameterization (2.50)
C/SIDE filters are not parameterized because the auto-parameterization feature in SQL
Server 7.0 is believed to provide the necessary parameterization on the server. The
development effort that is required to achieve the parameterization is quite high. All
INSERT, UPDATE and DELETE statements are parameterized, along with some rowsets
for navigating cursors. Subsequent tests have shown that the auto-parameterization
feature in SQL Server 7.0 does not work – or at least works very conservatively – and it
would therefore be necessary to do this in the driver.

Prepared Statements (2.50)
Prepared statements are used for all modifications except for the DELETEALL and
MODIFYALL functions. Statements used for GET and FIND(‘=’) are also prepared.

Statement re-use (2.50)
Modification statements for INSERT, DELETE and MODIFY are re-used; however only
two versions of DELETE and MODIFY are persistent; one with and one without the
timestamp check. Cursor-based rowsets for all FINDs are re-used, along with those for
GET. SIFT query rowsets are not re-used due to the isolated nature of the SIFT system.

Fetch Buffer Growth (2.50)
The buffering of rows for block rowsets is done by setting an initial buffer size based on
the width (in bytes) of the table and some threshold values. As records are read from a
rowset, the buffer grows steadily to reduce the number of fetches. This is not done
immediately because the reading pattern for a particular rowset is unknown. Once the
rowset is closed, the buffer is restored to its original size.

Paging in the User Interface (2.50)
When paging up or down in a regular table window, the form system makes requests
both forwards and backwards even though you are only paging in the same direction.
It also uses different records as reference points for requests for further records. This
disturbs the basic sequential reading from a cursor and causes several rowsets to be
executed when paging is being carried out. To avoid this, the rowset buffer layout has
been extended to give a scroll window that can be read backwards, like a history of the
current window. An additional anchor record is also maintained as well as the usual
current record, to cater for the dual reference points used in the form. This allows a
rowset to perform pure fetching when paging with the form system, utilizing the
history buffer and current records.
614

D.2 A Brief History of Performance Improvements
Preserving Rowsets during Modifications (2.50)
When modifying a record, for example, in a loop, it is best to allow as many cursors as
possible to remain open, including the cursor being used for the loop itself. This is
possible for fast-forward and dynamic cursors, provided that the modification is not to
a field in the current key, in which case the ordering of the record could change.
Although these cursor types retrieve fresh data at fetch time, they maintain a memory
buffer, which is not updated when the modification is performed. To allow
modifications and deletions of a record and to keep these cursors open, the buffer is
flagged for the record so that it cannot be visited again, but further records can be
read. If the modification is to a key field, the cursor must be closed.

Providing the ISEMPTY Alternative to FIND (2.50)
The new ISEMPTY function utilizes an existing driver function and allows a less
expensive, non-cursor, SQL statement to be used for determining whether or not a
filtered set is empty.

Client Caching (2.50)
Records are cached on the client for GET, FIND(‘=’), NEXT, SIFT queries and BLOB
data. This improves performance when re-reading these items but means that the data
is not necessarily the most recent.

Minimizing unnecessary Transactions (2.50)
Status information is maintained by the driver to minimize the amount of server calls
for transaction end blocks and isolation level changes. This significantly reduces the
number of server calls, which can otherwise be made many times by C/SIDE without
any logical necessity on the server.

Using optimal SIFT queries (2.50)
It was discovered that many SIFT queries that use the OR operator for bucket
comparisons are using fairly expensive execution plans on the server. Tests showed that
using the UNION ALL operator (with the necessary restructuring of the SQL statement)
gives a much faster execution plan.

Bulk Fetching during a Backup, and Batch Inserting during a Restore (2.50)
Two internal functions are implemented to improve backup and restore performance.
A bulk fetching function is built on the existing rowset functions to perform mass
record fetching. A batch insert function is created to utilize batch inserts in the SQL
Server ODBC driver, thereby reducing the number of server calls that must be made
when many inserts are performed.

Extended Parameterization (2.60.A)
C/SIDE filters are parameterized giving significant performance benefits throughout
the client. SIFT queries are also parameterized but they are still not re-used.

Extended Preservation of Rowsets during Modifications (2.60.A)
Modifications are made to extend the cursor types that can remain open during
modifications.
615

.
A New Algorithm for Deleting Rowsets (2.60.A)
The LRU algorithm that is used for deleting rowsets that are using cursors, when new
rowsets are created, is replaced with a more complex algorithm. The new algorithm is
introduced to prevent reports that have several loops, from deleting rowsets and using
new rowsets to continue the looping. The problem is also related to having cursors
used for FIND(‘-‘) operations that only request one row. The new scheme looks at
the state and usage of the cursor to determine if it should be deleted. This improves
performance for reports that have several loops.

Using Single-row Rowsets for FIND (2.60.A)
When a FIND(‘-‘) is issued, the default of initially fetching several rows is changed so
that only a single row is fetched. This is useful if the FIND will not retrieve further rows.
If it does retrieve further rows, the fetch size is set to the normal initial size.

Modifying Fewer Fields (2.60.A)
For a MODIFY, the SQL statement is changed so that it only updates those fields that
have been changed. This means reading the modified record in advance, but gives a
more efficient update especially where SIFT is concerned.

Client Analysis of Filters (2.60.D, 3.00)
To avoid some specific problems with the SQL Server query optimizer, the C/SIDE filter
is examined to determine if it defines an empty set. This analysis is done only for
particular operators. As a result of this analysis, many such queries are not executed on
the server.

Extended Statement Re-use (3.00)
All modification statements including DELETEALL and MODIFYALL are now re-used.
Rowsets that implement the ISEMPTY function, BLOB retrieval and SIFT queries are also
re-used now.

Modified Threshold Values (3.00)
The thresholds for buffer sizes, and the numbers of command and rowsets are adjusted
after performance testing.

Client Caching of SIFT Queries on Base Tables (3.00)
Sums performed on base tables, where the MaintainSIFTIndex property is set to No, are
obtained and cached in a single server call.

Change to Prepared Statements (3.01)
Statements that are used in cursor rowsets when performing FIND(‘-/+‘) are now
prepared, depending on the cursor type used. A known bug in the SQL Server ODBC
driver means that preparing statements with certain cursor types, while using an auto-
fetch feature, returns incorrect information to the client application. Since the problem
does not occur with Fast Forward cursors, these can be prepared as long as the cursor
type does not change after the first execution. Additionally, the statements for
ISEMPTY, BLOB retrieval and SIFT queries are all prepared.

Change to Single-row Rowsets (3.01)
The rules for using single-row rowsets are modified by using table and rowset statistics.
If the table has recently experienced any modifications to key fields, or a FIND(‘-/+‘)
616

D.2 A Brief History of Performance Improvements
rowset has not experienced a NEXT operation, single-row fetching will be used for the
rowset instead of buffered fetching.

Change to Rowset Closure and Cache Purging in Transactions (3.01)
The information about outer and inner transactions that is maintained by the C/SIDE
database layer is now passed onto the driver at the end of the transaction. All caches
are purged at the beginning of the first inner transaction, for example when a codeunit
is run.

The driver now allows non-locking cursors, which are used by tables that are not
locked, to remain open after a commit (but not a rollback). This improves batch job
performance when commits are issued during the batch job because cursors that are
used by looping tables that are not locked can continue to be used.

Utilizing Faster SQL Statements (3.01)
Rowsets continue to optimize for the situation where a result set is opened because of
a FIND(‘-/+’) and the set is fully read to the end. However, rowset statistics are used
to determine if a faster more efficient SQL statement can be used to satisfy the request
that a rowset is currently servicing. The following schemes have been introduced for
statements implementing FIND(‘-/+’), which replace the use of the original cursor in
the rowset:

• If a rowset is mainly producing empty results, a SQL statement that implements the
ISEMPTY function is used.

• If a rowset is mainly reading the first record only with no subsequent NEXT
operations, a single-row default result set is used.

• If a rowset is reading records to the end of a set and the set is small, a buffered
default result set is used.

Extended Client Caching (3.01)
The results for many rowsets are now cached, including the situation where no record is
found. Original cursor rowsets are not cached. They must be replaced by buffered
default result sets in order to be cached.

Change to Rowset Deletion (3.01)
The algorithm for deleting cursor rowsets is simplified to an LRU (least recently used)
system as for non-cursor types. Testing found this to be the best overall scheme and it
replaces the more complex system introduced in 2.6A. Since the number of rowset
objects has significantly increased, the original problems seen in 2.6 will no longer
occur for most typical batch jobs.

Change to Firehose Rowsets (3.10)
The rules for using a firehose rowset are slightly modified. A single-row rowset is never
converted to a firehose rowset. Furthermore, when a key is modified, all the existing
firehose rowsets for the table are deleted so that they will not be re-used. As before, a
firehose rowset will not be created when the table is undergoing key modifications.

Change to Rowset Closure Due to Modifications (3.10)
More use is made of single-row rowsets to allow them to remain open after
modifications are made to the table, and avoid having to create and execute new SQL
statements. A single-row rowset can now survive an INSERT, DELETEALL or MODIFYALL
617

.
operation. These operations are treated in the same way as key modifications and deny
the use of a firehose rowset.

Change to Rowset Memory Usage (3.10)
The number of rowsets and commands available for a connection is based on the
available physical memory as was the case in 3.01B, but now the number can change
dynamically as the program runs. If the amount of memory available is reduced to a
lower performance level than the current threshold, the command and rowset
resources are deleted to stay within the new limits. If more memory is available, the
performance level can increase to accommodate more resources. This memory
checking is performed within the usual resource expiry sweep – every 5 minutes.

Change to Rowset Expiry (3.10)
Rowsets are no longer checked for expiry prior to use. They can expire only within the
resource expiry sweep, but only after 30 minutes of inactivity. If the status of a rowset is
Open, it will never expire.

Change to Transaction End Markers in the User Interface (3.10)
The user interface often begins a transaction when performing a lookup. Sometimes
the transaction is ended with a rollback, and this closes all the active rowsets for this
connection. These rollbacks are now changed to commits in order to preserve the open
rowsets. The transaction itself has performed no work that needs to be committed or
rolled back, so the actually type of the transaction end is not important.

Non-locked Rowsets Persist Beyond a Transaction (3.10)
Rowsets that are created for a non-locked table (i.e. non-locked rowsets) can persist
beyond a transaction, even when the table was locked within the transaction.
Previously, once a table was locked, all its rowsets were closed on commit, including
non-locked rowsets that were opened before the table lock.

Automatic Bulk Inserts (3.10)
The driver automatically buffers record insertions and sends them in batches to the
server, in a similar manner as it does when restoring a database. Special operations are
performed for tables that contain SIFT keys to further optimize the use of the SIFT
triggers. There are various criteria that must be met before automatic bulk inserts are
available.
618

INDEX
A
ActiveX . 364
ANSI NULL default (database option) . . . 20
application

application object 47
design . 52
design (reference to books) 56

Application Area Name (field) 469
array . 304
ascending order . 85
Auto close (database option) 20
Auto shrink (database option) 21
automation . 364, 370

using Microsoft Word 370
where to put code 371

AutoReplace . 413
AutoSave . 413
AutoUpdate . 413

B
backup and restore facilities

Dynamics NAV Database Server 23
SQL Server Option 24

bigint
SQL Server data type 79

BigInteger
C/AL data type . 79
field data type . 65

binary
C/AL data type79, 80
SQL Server data type 80

binary (field data type) 64
bit

SQL Server data type 80
BLOB . 64

C/AL data type 79, 80, 302
field data type . 64

boolean
C/AL data type79, 80
displaying . 177
field data type . 64

bound control 141, 165
bound form . 140
breakpoints . 352

in the C/AL Editor 356
storage in XML file 357

Breakpoints virtual table 356
bugs . 346

C
C/AL

bugs . 346
comments . 321
constants . 305
control language 314

data types . 299
debugging . 346
defined . 48
dialogs . 340
editor . 45, 280
essential functions 328
expressions . 297
function calls . 312
Globals . 285
Locals . 286
operator hierarchy 312
operators . 310
program logic errors 351
repetitive statements 316
reusing code . 325
run-time errors 347
statements . 297
Symbol Menu 287, 478
syntax errors . 346
where to place 324

C/AL Editor
shortcut keys . 282
using . 282

C/AL functions
CALCDATE . 475
CALCFIELDS . 335
CALCSUMS . 336
CLEAR . 292
CLEARALL . 293
CONFIRM . 342
DELETE . 333
DELETEALL . 334
ERROR . 342
FIELDERROR . 336
FIELDNAME . 338
FIND . 328
GET . 328
GETRANGEMAX 331
GETRANGEMIN 331
INIT . 338
INSERT . 332
LOCKTABLE . 335
MESSAGE . 341
MODIFY . 332
MODIFYALL . 333
NEXT . 329
overview . 328
SETCURRENTKEY 329
SETFILTER . 330
SETRANGE . 330
STRMENU . 343
TESTFIELD . 338
VALIDATE . 339

Index
C/AL run-time errors 349
cache

commit cache . 562
DBMS cache . 560

CalcFormula (property) 90
calculation formula 90
CAPTIONAREA . 534
CaptionClassTranslate trigger 533
CAPTIONREF . 534

syntax . 535
card form . 142

creating . 143
CASE . 316
char

SQL Server data type 79
char (C/AL data type) 300
check box to display booleans 177
Client Monitor . 122

additional parameters for SQL Server
Option . 123

client/server environment
Dynamics NAV . 4

code
C/AL data type79, 301
field data type . 64

Code Coverage Tool 360
code examples

DimCaptionClassTranslate 537
VATCaptionClassTranslate 543

code fields . 80
codeunit

accessing functions 289
assigning . 290
compiling . 287
creating . 282
defined . 280
limitations . 294
running . 281
saving . 287
single instance . 293
specifications . 580

codeunit (C/AL data type) 302
collations

SQL Server Option 18
Color tool . 164
column . 60
COM . 364

and C/SIDE . 366
automation . 370
CREATE . 376
custom controls 394
declaring variables for external
components . 386
default members 377
enumerations . 368
exceptions . 400
limitations on event triggers 390
Microsoft Excel . 381

OCX . 394
receiving events in C/SIDE 386
restrictions on incoming data 391
terminology . 364
the WithEvents property 388
USERDEF . 368
using Microsoft Word 370

commit
in C . 525
in C/AL . 525

commit cache . 562
COMMIT() . 526
company . 94
company level security 32
Company system table 115
complex data types 302
compound statement 314
concurrency . 522
conditional statements 314
configuration parameters

SQL Server Option 568
consistency . 522
constant . 305

text . 283, 305
container control 140, 155

frame . 179
control

adding . 157
aligning . 162
bitmaps . 182
bound . 141, 165
branch . 140
changing caption 165
changing name 165
check box . 177
Color tool . 164
command button 156, 178
container 140, 155, 179
container control selection 161
control branch selection 161
data . 155
data types . 155
defined . 48
display properties 166
displaying numbers 166
Font tool . 164
formatting data 166
frame . 155, 179
image . 155
in reports . 213
indicator . 182
input . 167
label . 155
menu button 156, 196
menu item . 156
moving . 162
multiple selection 160
option button group 175

Index
option drop-down 172
picture box . 181
properties of, in forms 165
shape . 155, 180
sizing . 163
static . 155
subform . 156
tab control 155, 183
table box . 156, 183
text box 157, 158, 165, 171
toolbox . 157
tools . 164
ToolTip . 167
types of . 155
unbound . 141, 165

control types . 155
CREATE

automation variable 370, 376
creating a database

Dynamics NAV Database Server 14
SQL Server Option 17

custom control . 364
developing . 402
using in C/SIDE 394

D
data . 63
data container . 156
data controls . 155
data integrity 520, 524
data item . 212, 213

data model 228, 236, 242
dataport . 406
defined . 48
properties . 226

data model . 53
dataport . 407

data type
BigInteger (field) 65
binary (field) . 64
BLOB (C/AL) . 302
BLOB (field) . 64
boolean (field) . 64
char (C/AL) . 300
code (C/AL) . 301
code (field) . 64
codeunit (C/AL) 302
complex (C/AL) 302
controls and data types 155
date (C/AL) . 300
date (field) . 64
DateFormula . 475
dateformula (C/AL) 302
dateformula (field) 65
DateTime (field) . 65
datetime (SQL) . 64
decimal (C/AL) . 300
decimal (field) . 63

decimal (SQL) . 63
dialog (C/AL) . 302
Duration (field) . 65
field data type . 65
fieldref (C/AL) . 303
file (C/AL) . 302
form (C/AL) . 302
fundamental . 299
GUID (C/AL) . 302
GUID (field) . 65
image (SQL) . 64
instream and outstream (C/AL) 303
integer (field) . 63
integer (SQL) . 63
keyref (C/AL) . 303
mixing . 506
option (C/AL) . 299
option (field) . 63
recordID (C/AL) 303
recordref (C/AL) 303
report (C/AL) . 302
RowID (field) . 65
table fields . 63
tablefilter (C/AL) 303
text (field) . 63
time (field) . 64
tinyint (SQL) . 64
varbinary (SQL) . 64
varchar (SQL) 63, 64
variant (C/AL) . 303

data version
defined . 521
historical . 523
storage of . 522

database
defined . 49
design . 52
design (reference to books) 56
logical . 49
physical . 49

Database File virtual table 128
Database Key Groups system table 116
database level security 30
database logins . 32
database options

ANSI NULL default 20
Auto close . 20
Auto shrink . 21
Recovery model 19
Recursive triggers 20
SQL Server Option 19
Torn page detection 21

dataport
AutoReplace . 413
AutoSave . 413
AutoUpdate . 413
combining export and import 430
data item . 406

Index
data item properties 413
data model . 407
description . 406
designing . 411
dynamic dataport example 430
export examples 417
export, fixed format 417
export, variable format 423
external file . 407
field . 406
field properties 414
FileFormat property 412
fixed format export 417
fixed format import 425
import examples 425
import, fixed format 425
import, variable format 428
logical design . 407
property . 407, 411
request form . 406
running . 408, 410
trigger . 407, 415
variable format export 423
variable format import 428

Dataport Designer . 45
date

C/AL data type 79, 80, 300
field data type 64, 82

Date virtual table . 118
DateFormula

C/AL data type . 79
dateformula

C/AL data type . 302
field data type . 65

DateTime
C/AL data type . 79
field data type . 65

datetime
SQL Server data type 79

DBL_BWT . 525
DBL_EWT . 525
DBMS . 520

cache . 560
specifications . 578

deadlock detection 524
debugger

activating . 352
breakpoints stored in XML file 357
code coverage . 360
interface . 353
menus . 353
overview of shortcut keys 358
running on Dynamics NAV Application
Server . 353
setting breakpoints in the C/AL Editor . .
356
storage of information in the fin.zup file
358

the Breakpoints virtual table 356
toolbar . 354
windows . 355

decimal
C/AL data type 79, 80, 300
field data type . 63
SQL Server data type 79

default members (COM) 377
delayed write back 562
deleting language 468
descending order . 85
Designer

Dataport . 45
Form . 45
Navigation Pane 45
Report . 45
Table . 45
XMLport . 45

dialog . 340
C/AL data type 302

DimCaptionClassTranslate 537
DIMCAPTIONREF 535
DIMCAPTIONTYPE 535
dimension area . 535
document . 264
Documentation section 280
drill-down

form . 193
Drive virtual table 120
Duration

C/AL data type . 79
field data type . 65

Dynamics NAV
client/server environment4
functional areas and granules 36
initiating the security system 34
installing .6
installing Dynamics NAV Database Server
8
installing multiple Dynamics NAV
Database Servers 11
installing SQL Server Option 10
installing the client7
security,different levels 30

Dynamics NAV C/SIDE client
installing .7

Dynamics NAV Database Server
backup and restore facilities 23
creating a database 14
installing .8
installing multiple instances 11
locking in . 527
number sorting 515
running as a service9
SIFT . 25, 484
troubleshooting the database connection
11

Index
Dynamics NAV debugger 352
Dynamics NAV license

granules . 36
Dynamics NAV security system

different levels . 30
initiating . 34
things to remember 34

E
editor

purpose . 45
using . 280

Entity-Relationship (ER) model 53
enumerations . 368
Event Designer (XMLports) 452
Events

receiving . 386
EXIT . 319
expression

basic elements of 305
defined . 297
evaluation 298, 506

extended stored procedure
adding to SQL Server Option 10

external tools
accessing table data with 82

F
Field

virtual table . 130
field

dataport . 406
defined . 48
illustration . 60
property . 68
trigger . 96

Field Menu
in reports . 218

Field Virtual Table 130
Field virtual table . 130
fieldref

C/AL data type . 303
file (C/AL data type) 302
File virtual table . 120
FileFormat property 412
filters

and number sorting 517
float

SQL Server data type 80
FlowField

calculation formula 90
table filter . 92

FlowFilter field . 87
Font tool . 164
FOR TO/DOWNTO 317
Form . 469
form

bound . 140
card form 142, 143

closing . 150
compiling . 150
creating 142, 143, 147, 149
description . 140
design . 140, 187
drill-down . 193
Form Wizard . 142
lookup . 192
main form . 186
running . 150, 195
saving . 150
specifications . 580
subform . 186
tabular form . 142
test-compiling 150
unbound . 140

form (C/AL data type) 302
form design

Color tool . 164
Font tool . 164
toolbox . 157
tools . 164

Form Designer 45, 140
Form Wizard 142, 143

creating a card form 143
creating a tabular form 147

function
accessing in codeunit 289
C/AL . 280
creating . 283

functional areas and granules 36
fundamental data types 299

G
Globals . 285
granules

Dynamics NAV license 36
granules and functional areas 36
graph

creating with Microsoft Excel 381
groups in reports 242
GUID

C/AL data type 79, 302
field data type . 65

H
HotCopy

server based backup 24

I
ID number . 44
IF THEN ELSE . 315
image

SQL Server data type 79
index hinting

SQL Server Option 568
installing

Dynamics NAV .6
Dynamics NAV C/SIDE client 7

Index
Dynamics NAV Database Server 8
multiple Dynamics NAV Database Servers
11
SQL Server Option 10

instream and outstream
C/AL data type . 303

integer
C/AL data type79, 80
field data type . 63
SQL Server data type 79, 80

Integer virtual table 119
integration options

Maintain Relationships 22
Maintain Views . 22
SQL Server Option 22
Synchronize Table Relationships 22

integrity . 520

K
key

defined . 48
discussed . 71
groups . 116
in ER model . 54
list . 71, 74, 75
performance . 74
primary . 71
property . 75
secondary . 72
SumIndexFields 484

Key virtual table . 130
keyref

C/AL data type . 303

L
Language . 469
language

adding . 467
deleting . 468
multiple document 471

language ID . 469
language layer . 467
lazy write . 562
license file

per database . 22
limitations

event triggers . 390
linked objects

description . 105
requirements . 106

Locals . 286
lock granularity

SQL Server Option 570
locking

a comparison of Dynamics NAV Database
Server and SQL Server 527
in Dynamics NAV Database Server . . . 527
in SQL Server . 528

locks . 524
log file . 521
logical database . 49
lookup . 189, 191

form . 192
table relation . 191

looping (C/AL) . 316

M
main form . 186

design . 187
Maintain Relationships (integration option)
22
Maintain Views (integration option) 22
Member Of system table 113
menu

design . 196, 197
menu button . 196
menu item . 196
menu line . 197
shortcut key . 197

MenuSuite object 456
customizing . 457
exporting . 460
levels . 458
Navigation Pane 456
Navigation Pane Designer 456
upgrading . 462

Microsoft Enterprise Manager 82
Microsoft Excel . 381
Microsoft Word . 370
money

SQL Server data type 80
Monitor virtual table 121
multilanguage . 465

C/ODBC . 470
date formulas . 475
multiple document languages 471
SQL views . 82
text constants 466, 472

N
Navigation Pane . 456
Navigation Pane Designer 45, 456
nchar

SQL Server data type 79
nonprinting report 270
ntext

SQL Server data type 80
Number . 302
number sorting

a definition of . 516
and filters . 517
differences between Dynamics NAV
Database Server and SQL Server 516
principles . 517
recommendations 516

Index
numbering principles 517
numeric

SQL Server data type 80
nvarchar

SQL Server data type 79

O
object level security 32
OCX . 364

developing . 402
registering . 394
using in C/SIDE 394

OLE . 364
OnRun section . 280
operators

arithmetic (type conversion) 509
hierarchy . 312
logical (type conversion) 509
relational (type conversion) 508
using in C/AL . 310

option
C/AL data type 79, 80, 299
field data type . 63

option (C/AL data type) 79
order

ascending . 85
descending . 85

P
performance

C/AL functions and SQL Server . 565, 567
command buffer 563
commit cache . 562
DBMS cache . 560
keys . 74
keys and queries 565
measuring . 121

performance monitoring
both server options 26

Permission system table 114
physical database . 49
program logic errors 351
Properties window 141
property

CalcFormula . 90
control141, 152, 165, 166, 167
control, general properties 154
dataport . 407, 411
defined . 48
fields . 68
form . 141, 152
inheriting . 152
key . 75
list of, in forms . 153
list of, in reports 213
list of, in tables . 66
Properties window 141
report . 224, 225
TableRelation . 98

R
read consistency . 522
real

SQL Server data type 80
record

defined . 60
record level security 34

applying in a posting scenario 549
applying to complex forms 554
applying to user-defined variables . . 554
calcsums and Find(’+’) 547
codeunits . 547
debugging the code 551
entering the filters 549
forms reports and dataports 547
giving a codeunit indirect read permission
552
giving the user indirect read permission .
550
implementation guidelines 548
matching filters with keys 546
performance considerations 546
setpermissionfilter 546
supporting on SQL Server option . . . 546
the RESET function and filters 557
using setpermissionfilter in C/AL 556
using with variables 546

recordID
C/AL data type 303

recordref
C/AL data type 303

Recovery model (database option) 19
Recursive triggers (database option) . . . 20
registering an OCX 394
relationship . 98
REPEAT UNTIL . 318
report

closing . 221
control . 213
controlling output 259
data item 212, 213, 228, 236, 242
data item properties 226
data item triggers 249
data model 228, 236, 242
definition . 212
designing sections 231, 238, 245
documents . 264
execution . 215
Field Menu . 218
flow chart . 215
grouping . 242
nonprinting . 270
properties 213, 224
property, description of 225
report description 212
report triggers 249
request form . 213
Request Options Form Designer 218, 219

Index
running . 221
saving . 221
section 212, 214, 231
Section Designer 218
section properties 227
section triggers 249
specifications . 580
totaling . 242
totals . 244
triggers . 213, 249
types and naming 274
virtual tables in reports 250

report (C/AL data type) 302
report description 212
Report Designer . 45
request form . 213

dataport . 406
Request Options Form Designer . . 218, 219
RequestForm . 213

defined . 48
row . 60
RowID

C/AL data type . 79
field data type . 65

run-time errors 327, 347
avoiding . 349
finding and correcting 351

S
section . 212, 214

defined . 48
designing 231, 238, 245
properties . 227
triggers . 249

Section Designer . 218
security

company level . 32
database level . 30
database logins . 32
initiating the security system 34
object level . 32
record level . 34
Windows logins . 31

server based backup
HotCopy . 24

Server virtual table 131
Session virtual table 125
shortcut key . 197
shortcut keys

in the debugger 358
SID - Account ID virtual table 133
SIFT

Dynamics NAV Database Server . .25, 484
SQL Server Option 25, 486–504
tables on SQL Server 78

smalldatetime
SQL Server data type 80

smallint
SQL Server data type 80

smallmoney
SQL Server data type 80

specifications
codeunit . 580
DBMS . 578
forms . 580
reports . 580
tables . 579

SQL Server
enabling a trace flag 15
locking in . 528
SIFT tables . 78

SQL Server Option
adding extended stored procedure . . 10
additional parameters in the Client
Monitor . 123
backup and restore facilities 24
collations . 18
configuration parameters 568
creating a database 17
database options 19
how code fields work in 64
index hinting . 568
installing . 10
integration options 22
linked objects . 105
lock granularity 570
maintaining table relationships 101
SIFT . 25, 486–504
SIFT buckets . 488
SIFT table . 487
SIFT table, extended key 495
SIFT table, indexes 495
SIFT table, layout 495
SIFT table, optimizing 504
SIFT Trigger . 487
SIFT, costs and benefits 503
SIFT, Date fields 491
SIFT, DateTime fields 494
SIFT, deleting records 500
SIFT, updating the base table 498
sorting numerical values in code fields . .
515
supporting record level security 546

statement
compound . 314
conditional . 314
defined . 297

String . 302
subform . 156, 186

design . 187
SumIndexField

and FlowFields . 87
and SQL Server 529
defined . 484

Index
Symbol Menu 287, 478
Synchronize Table Relationships (integration
option) . 22
syntax errors . 346
system table . 112

Company . 115
Database Key Groups 116
Member Of . 113
Permission . 114
User . 113
User Role . 114
Windows Access Control 115
Windows Login 115

system-defined variable 306, 326

T
tab control . 155
table

accessing data with external tools 82
adding records . 86
defined . 60
description . 60
modifying the design of 104
property . 66
relationship . 98
saving . 84
specifications . 579
system . 112
temporary . 110
trigger . 96
validating relationship 191
viewing data in . 84
virtual . 117

Table Designer .45, 62
Table Information virtual table 129
table property

LinkedInTransaction 105
LinkedObject . 105
list . 66
viewing and modifying 66

table relation . 191
and assist edit . 100
example . 100

TableFilter
C/AL data type . 79
data type (field) . 65

tablefilter
C/AL data type . 303

TableRelation property 98
tabular form . 142

creating . 147
template . 48
temporary table . 110
text

C/AL data type79, 80
field data type . 63
SQL Server data type 80

text box
adding . 157, 158
adding a label . 165
calculation . 171
multiple lines . 171

text constant 283, 305
Text Constants . 466
time

C/AL data type . 79
field data type 64, 82

tinyint
SQL Server data type 79, 80

toolbox . 157
ToolTip . 167
Torn page detection (database option) . 21
totals

and sections . 244
totals in reports . 242
Trace flag

enabling on SQL Server 15
transaction . 520
trigger

control . 141, 201
data item . 249
dataport . 407, 415
defined . 48
field . 96
form . 141, 200
overview of control triggers 201
overview of form triggers 200
overview of report triggers 249
report . 213, 249
table . 96

triggers
CaptionClassTranslate 533

type conversion . 506

U
unbound control 141

changing to bound 165
unbound form . 140
uniqueidentifier

SQL Server data type 79, 80
User Role system table 114
User SID virtual table 134
User system table 113
USERDEF . 368
user-defined variable 306

V
varbinary

SQL Server data type 79
varchar

SQL Server data type 79
SQLdata type . 64

variable
arrays . 304
assignment . 308
creating . 282

Index
CurrForm . 326
CurrReport . 326
initialization . 308
naming conventions 306
Rec . 326
system-defined 306, 326
user-defined . 306
xRec . 326

variant
C/AL data type . 303

VATCAPTIONREF . 536
VATCAPTIONTYPE 536
virtual table . 117

Breakpoints . 356
Database File . 128
Date . 118
Drive . 120
Field . 130
File . 120
Integer . 119
Key . 130
Monitor . 121
Server . 131
Session . 125
SID - Account ID 133
Table Information 129
User SID . 134
Windows Group Member 133
Windows Object 132

virtual tables . 250

W
WHILE DO . 318
Windows Access Control system table . . 115
Windows Group Member virtual table . 133
Windows Login system table 115
Windows logins . 31
Windows Object virtual table 132
WITH . 320
write locks . 524
write transaction . 520

X
XMLport Designer . 45
XMLports

designing . 442
Event Designer . 452
examples . 445
saving, compiling and running 440
validating data . 450

xp_ndo.dll
adding . 10

	Table of Contents
	Architecture
	Architecture and Installation
	1.1 The Microsoft Dynamics NAV Client/Server Environment
	The Dynamics NAV C/SIDE Client
	The Server

	1.2 Installation
	What to Avoid During Installation
	The Product DVD
	Installing the Dynamics NAV C/SIDE Client
	The Stand-Alone Client Installation
	The C/SIDE Database Server Client/Server Installation
	Installing the Microsoft SQL Server Option for the Dynamics NAV C/SIDE Client
	Adding the Extended Stored Procedure Manually
	Installing Multiple C/SIDE Database Servers
	Troubleshooting the Database Connection

	The Server Options
	2.1 The Different Server Options
	Creating Databases
	C/SIDE Database Server
	SQL Server Option
	Advanced

	Backup Features
	C/SIDE Database Server
	SQL Server Option

	SIFT
	C/SIDE Database Server
	SQL Server Option

	Performance Monitoring
	Other Differences

	The Dynamics NAV Security Model
	3.1 Security
	Database Level Security
	Windows Logins
	Database Logins
	Company Level Security
	Object Level Security
	Record Level Security
	Things to Remember about the Dynamics NAV Security System

	3.2 Business Areas and Granules

	Fundamentals
	C/SIDE Fundamentals
	4.1 The C/SIDE User Interface
	Designing Application Objects
	The Object Designer

	4.2 What Is a C/SIDE Application?
	General C/SIDE Concepts

	4.3 The Physical and the Logical Database
	The Logical Structures in Your Database

	Designing a C/SIDE Application
	5.1 Introduction to C/SIDE Application Design
	Understanding the Problem
	Designing the Tables
	How Are ER Model Concepts Related to C/SIDE Concepts?
	Determining Field Types
	Role of Keys in C/SIDE
	Determining the Relationships
	Assuring the Quality of the Design

	Designing the Application
	Recommended Books on Database Design

	Tables
	Table Fundamentals
	6.1 What Is a Table?
	Creating a Table
	Adding Fields to Your Table
	Choosing Data Types

	6.2 Viewing and Modifying Properties
	Viewing and Modifying Table Properties
	Viewing and Modifying Field Properties

	6.3 Defining Keys
	How to Define a Primary Key
	How to Create Secondary Keys
	Sort Orders and Secondary Keys

	How Keys Affect Performance
	How Keys Are Stored
	Viewing and Modifying Key Properties

	6.4 Identifiers, Data Types and Data Formats in the SQL Server Option for Dynamics NAV
	Naming Identifiers
	Representation of Dynamics NAV Data Types
	Compatibility of Data Types
	Data Format Considerations
	Code Fields
	Date and Time Fields
	Accessing Dynamics NAV Tables with External Tools

	6.5 Saving tables and Viewing Sorted Data
	6.6 Special Table Fields
	What Are SumIndexFields?
	What Advantages Do SumIndexFields Offer?

	What Are FlowFields?
	Creating a FlowField
	Calculation Formulas and the CalcFormula Property
	Creating, Viewing and Editing a Calculation Formula

	Using FlowFilter Fields in the Calculation Formula

	6.7 Dividing the Database into Companies

	Customizing and Maintaining Tables
	7.1 Using Table and Field Triggers
	7.2 Setting Relationships Between Tables
	Why Use Relationships?
	Table Relations and the TableRelation Property
	Creating Basic Table Relations
	Creating Table Relations with the Assist-Edit Tool
	Maintaining Table Relationships on SQL Server
	Requirements
	Synchronization

	7.3 Changing Tables That Contain Data
	Rules for Changing Tables

	7.4 Linked Objects
	Defining Linked Object Table Properties
	Creating a Dynamics NAV Table Description
	Deleting a Dynamics NAV Table Description:

	Requirements for Linking Objects
	Rules Determining Compatibility

	Redesigning the Dynamics NAV Linked Object Table Definition
	Accessing Objects in Other Databases or on Linked Servers

	Special C/SIDE Tables
	8.1 What Is a Temporary Table?
	Defining and Using a Temporary Table

	8.2 What Is a System Table?
	The User System Table
	The Member Of System Table
	The User Role System Table
	The Permission System Table
	The Windows Access Control System Table
	The Windows Login System Table
	The Company System Table
	The Database Key Groups System Table

	8.3 What Is a Virtual Table?
	When to Use Virtual Tables
	Overview of the Virtual Tables
	Using the Virtual Tables
	The Date Virtual Table
	The Integer Virtual Table
	The File Virtual Table
	The Drive Virtual Table
	The Monitor Virtual Table
	Client Monitor - Additional Parameters for the SQL Server Option
	The Session Virtual Table
	The Database File Virtual Table
	The Table Information Virtual Table
	The Field Virtual Table
	The Key Virtual Table
	The Server Virtual Table
	The Windows Object Virtual Table
	The Windows Group Member Table
	The SID - Account ID Virtual Table
	The User SID Virtual Table

	Forms
	Form Fundamentals
	9.1 What Are Forms?
	What are Controls?
	What Are Bound and Unbound Forms and Controls?
	What Are Form and Control Properties?
	What Are Triggers?

	9.2 Creating Forms
	Creating Forms with a Form Wizard
	Creating a Card Form
	Creating a Tabular Form

	Creating Forms Without a Wizard

	9.3 Saving, Compiling and Running Forms
	Saving and Closing a Form
	Compiling a Form
	Running a Form

	Designing Forms
	10.1 Form and Control Properties
	How Properties Are Inherited
	Form Properties
	General Properties for Controls

	10.2 Types of Controls
	Static controls
	Data controls
	Containers
	Data Containers
	Other Controls

	10.3 Adding Controls
	The Toolbox
	Adding a Text Box
	Adding a Text Box without Using the Field Menu
	Creating Labels That Display Descriptive Text

	10.4 Selecting, Moving and Adjusting Controls
	Selecting Controls
	Multiple Selections
	Adding to a Selection
	Marquee Selection
	Selection and Container Controls
	Selection and Control Branches

	Moving Controls
	Moving Selected Controls
	Aligning Controls
	Sizing and Resizing Controls
	Sizing Container Controls

	10.5 Tools for Customizing Controls
	Using the Color Tool
	Using the Font Tool

	10.6 Setting Control Properties
	Changing the Properties of a Control
	Changing the Name and Caption of a Control
	Changing an Unbound Control into a Bound Control
	Adding a Label to a Text Box

	Display Properties
	Controlling the Display of Numbers
	Formatting Data Display

	Properties That Control Input
	Assisting the User

	10.7 Container Controls
	Using a Frame to Contain Controls
	Creating a Tab Control
	Creating a Table Box

	10.8 How to Use Controls in Applications
	Displaying More Than One Line of Text
	Displaying a Calculated Value
	Presenting a Set of Options
	Creating a Drop-Down List of Options
	Creating an Option Button Group

	Using a Check Box to Display Booleans
	Creating and Using Command Buttons
	Containing Controls Within a Frame
	Adding Shapes and Pictures
	Using Shapes
	Adding a Static Picture as an Image
	Adding a Data Dependent Picture as a Picture Box
	Pictures on Command, Menu and Option Buttons and in Check Boxes

	Using an Indicator to Display Values
	Creating a Tab Control
	Creating a Table Box

	Extending the Functionality of Your Forms
	11.1 Main Forms and Subforms
	Designing the Main Form
	Designing the Subform
	Hints and Advice

	11.2 Looking Up Values and Validating Entries
	Defining the Table Relation
	Validating Entries
	Using the Default Lookup or Writing Your Own?
	Defining a Lookup Form
	Permanent Assist
	Looking Up in the Current Table

	11.3 Drilling Down to the Underlying Transactions
	11.4 Launching Another Form
	Adding a Command Button

	11.5 Designing Menu Buttons
	Adding a Menu Button to a Form
	Adding a Menu Item to a Menu
	Adding Other Menu Items
	Displaying Check Marks on Menu Items

	11.6 Form and Control Triggers
	Overview of Form Triggers
	Overview of Control Triggers
	How to Define and Modify Form and Control Triggers

	11.7 Form Types and Characteristics
	Types of Forms and Examples
	Card Forms
	Statistics Forms
	Tabular Forms
	List Forms
	Worksheet Forms
	Header/Line Forms
	Setup Forms
	Menu Forms
	Other Multi-Record Forms

	Standard Navigation

	Reports
	Report Fundamentals
	12.1 What Are Reports?
	The Report Components
	Logical and Visual Design

	12.2 What Happens When a Report Runs?
	The Report Run

	12.3 The Report Designer
	The Report Designer
	The Section Designer
	The Request Options Form Designer

	12.4 Saving, Compiling and Running Reports
	Saving and Compiling a Report
	Running a Report

	Designing Reports
	13.1 Report Properties
	How Properties Are Inherited
	Report Properties
	Data Item Properties
	Section Properties
	Control Properties

	13.2 Designing a Simple Report
	Defining the Data Model
	Using the Wizards

	Designing the Sections

	13.3 Designing a More Advanced Report
	Defining the Data Model
	Designing The Sections

	Extending Report Functionality
	14.1 Grouping and Totaling
	Defining the Data Model
	The Relationship between Totals and Sections
	Designing the Sections

	14.2 Triggers in Reports
	Report Triggers
	Data Item Triggers
	Section Triggers

	14.3 Advanced Sample Reports
	Using Virtual Tables
	Using the Date Table
	Defining the Data Model
	Designing the Sections
	Adding the Fields to the Report
	Calculating the Number of Entries
	Calculating the Total Number of Entries and the Total Amount Per Date
	Printing the Date in the First Iteration Only
	Calculating the Grand Total Amount and the Grand Total Quantity
	Printing the Selected Range of Dates

	14.4 Creating a Simple Document
	Defining the Data Model
	Using the Triggers
	Designing the Sections

	14.5 Creating a Nonprinting Report
	Defining the Data Model
	Creating the Request Form
	Using the Triggers

	14.6 Types of Report
	List Reports
	Test Reports
	Posting Reports
	Transaction Reports
	Other "Normal" Reports
	Document Reports

	Codeunits
	Codeunit Fundamentals
	15.1 What Is a C/SIDE Codeunit?
	15.2 Creating Codeunits
	Using the C/AL Editor
	Defining Variables, Text Constants and Functions in Codeunits
	Using the C/AL Symbol Menu
	Compiling and Saving Codeunits

	15.3 Using Codeunits
	Limitations on Codeunits

	Introducing the C/AL Language
	16.1 What Can You Do with C/AL?
	16.2 What Are Statements, Expressions, and Operators?
	What Is a C/AL Expression?
	Introducing the C/AL Data Types
	Fundamental Data Types
	Descriptive Data types
	Complex Data Types
	Creating Arrays of Variables

	16.3 Introducing the Elements of C/AL Expressions
	Constants
	Using Variables in C/AL
	Variable Names
	Initialization
	Assignment and Type Conversion
	Valid Assignments

	Using Operators in C/AL
	Operator Hierarchy
	Function Calls

	16.4 The C/AL Control Language
	Compound Statements
	Conditional Statements
	The IF THEN ELSE Control Structure
	The CASE Control Structure

	Using Repetitive Statements
	The FOR TO/DOWNTO Control Structure
	The WHILE DO Control Structure
	The REPEAT UNTIL Control Structure
	The EXIT Statement
	The WITH Statement
	How to Annotate Your Programs

	Using C/AL
	17.1 Overview
	Where to Write C/AL Code
	Reusing Code

	17.2 System-Defined Variables
	17.3 Handling Runtime Errors
	17.4 The Essential C/AL Functions
	Searching For Records
	Sorting and Filtering Records
	Inserting, Modifying and Deleting Records
	Transactions
	Working with Fields
	User Messages And Dialogs
	Creating a Window to Indicate Progress
	Other User Messages

	A Quick Options Form

	Debugging C/AL Code
	18.1 What Are Bugs?
	Syntax Errors
	Run-time Errors
	How to Avoid Run-time Errors
	Data Type-Related Errors
	Other Run-time Errors

	Finding and Correcting Run-time Errors
	Program Logic Errors

	18.2 The Microsoft Dynamics NAV Debugger
	Overall Description
	Activating the Debugger
	The Debugger Interface
	Debugger Menus
	The Debugger Toolbar
	Debugger Windows
	Symbols used in the Debugger Interface

	Working with Breakpoints in the C/AL Editor
	The Breakpoints Virtual Table
	Storage of Breakpoints in an XML File
	Overview of Shortcut Keys

	18.3 The Code Coverage Tool
	Using the Code Coverage Tool

	Extending C/AL
	19.1 What Is COM?
	Terminology and History

	19.2 Using COM Technologies in C/SIDE
	Parameters, Return Values and Data Types

	19.3 Using C/SIDE as an Automation Controller
	Writing a Letter In Microsoft Word
	Where to Place Automation Code
	Background Information about Using Word in this Example
	Creating the Template in Word
	Creating the Codeunit and Declaring the Variables
	Writing the C/AL Code
	Calling the Codeunit from the Customer Card

	Graphing With Microsoft Excel
	Background Information about This Example
	Creating the Codeunit: Declaring Variables
	Creating the Codeunit: Initial Steps
	Creating the Codeunit: Transferring Data
	Creating the Codeunit: Making the Graph

	19.4 Receiving Events in C/SIDE
	Receiving Notification of Inbound Documents
	Receiving the Event

	Event Triggers
	Sending the Stream
	Running and Testing the Example

	19.5 Using Custom Controls from C/SIDE
	Simple Example
	Installing and Registering the Control
	Using the Control in C/AL
	Designing the Form
	Adding the Code to the Form

	19.6 Acquiring Controls

	Dataports
	Dataports
	20.1 What Are Dataports?
	Logical Design
	Designing the Data Model
	External file

	How a Dataport Is Run
	Saving, Compiling and Running a Dataport
	Saving and Closing a Dataport
	Compiling a Dataport

	Running a Dataport

	20.2 Designing Dataports
	Dataport Properties
	File Format

	Data Item Properties
	AutoUpdate, AutoReplace, AutoSave

	Field Properties
	Dataport Triggers

	20.3 Exporting Data
	Exporting - Fixed Format
	Simple Version
	Refined Version

	Exporting - Variable Format

	20.4 Importing Data
	Importing - Fixed Format
	Importing - Variable Format
	Importing or Exporting: A Dynamic Dataport
	Creating the Export Part
	Creating the Import Part
	Further Work

	XMLports
	XMLports
	21.1 XMLport Fundamentals
	Saving, Compiling and Running an XMLport
	Saving and Closing an XMLport
	Compiling an XMLport
	Running an XMLport

	21.2 Designing XMLports
	The XMLport Designer
	XMLport Properties, Functions and Triggers

	21.3 XMLport Examples
	21.4 Validating Data
	21.5 XMLports and Business Notifications

	MenuSuite Objects
	MenuSuite Objects
	22.1 Menu Suite Fundamentals
	Creating and Designing MenuSuite Objects

	22.2 Customizing a Menu Suite
	Creating Menu Items
	Setting Properties
	MenuSuite Object Levels

	22.3 Exporting a MenuSuite Object
	22.4 Upgrading Menu Suite Content

	Multilanguage Functionality
	Multilanguage Functionality
	23.1 Multilanguage Functionality
	Defining the Current Application Language
	Selecting a Language from the User Interface
	Text Constants
	Language Modules
	Installing *.STX, *.ETX, *.CHM and *.HH files for Multilanguage
	Adding a Language Layer
	The Language Subfolder
	Deleting a Language Layer

	The Windows Language Virtual Table
	Tab Controls
	Maintaining SQL Views
	NAV ODBC
	Displaying Text
	Multiple Document Languages

	23.2 Developing Multilanguage-Enabled Applications
	Name Property
	Text Constants
	Caption Property
	CaptionML Property
	Creating Captions
	Option Buttons
	Option Strings
	Option Variables

	Date Formulas
	Usage in C/AL Code

	23.3 Learning the Code Base Language
	Generating a Dictionary
	How to See Both Captions and Names
	Zoom Functionality
	Table List, Form List, Field List, Object List and Field Menu

	C/AL Scanner
	C/AL Symbol Menu

	23.4 Number Ranges for Text Constants

	Beyond the Basics
	SumIndexFields
	24.1 SumIndexFields
	SIFT and C/SIDE Database Server

	24.2 SIFT and the SQL Server Option for Dynamics NAV
	SIFT Components
	SIFT and Cache

	Naming Conventions
	SIFT Triggers
	SIFT Tables

	Buckets and SIFT Levels
	What are SIFT Levels?

	SIFT Levels and Fields of the Date Data Type
	SIFT Levels and Fields of the DateTime Data Type

	SIFT Tables
	Updating the Base Table
	Deleting Records from the Base Table

	Configuring the SIFT Levels
	SIFT and Performance
	Optimizing SIFT Tables

	Type Conversion
	25.1 Type Conversion in Expressions
	25.2 Type Conversion Mechanisms
	Relational Operators
	Valid Uses of Relational Operators

	Boolean (Logical) Operators
	Arithmetic Operators
	Complete Overview of Type Conversion Rules
	The Unary Arithmetic Operators
	The Binary Arithmetic Operators

	Numbering in Dynamics NAV
	26.1 How Does Number Sorting Work?
	Numbering Principles
	Filters

	C/SIDE in Multiuser Environments
	27.1 Ensuring Data Integrity in a Multiuser Environment
	Write Transactions and Recovery
	More on Write Transactions

	Read Consistency and Concurrency
	What is a Data Version?
	What is Table Locking?
	What Is Deadlock Detection?
	Are There Any Differences between Commit in C/AL and C?

	27.2 Locking in Dynamics NAV - a Comparison of the two Server Options
	Both Server Options
	Locking in C/SIDE Database Server
	Locking in SQL Server
	Locking Differences in the Code

	Caption Class Functionality
	28.1 Syntax
	Function Code
	Syntax for CAPTIONREF

	Dimension Area
	DIMOPTIONALPARAM1
	DIMOPTIONALPARAM2

	VAT
	VATCAPTIONTYPE
	VATCAPTIONREF

	28.2 Function Code
	DimCaptionClassTranslate (ID 7)
	Code

	VATCaptionClassTranslate (ID 9)
	Code

	Supporting Record Level Security
	29.1 Record Level Security
	Implementing Record Level Security
	Forms, Reports and Dataports
	Codeunits

	Applying Security Filters in a Posting Scenario
	Security Filters and Complex Forms

	Performance
	30.1 The DBMS Cache
	30.2 The Commit Cache
	30.3 The Command Buffer
	30.4 Keys, Queries and Performance
	30.5 C/AL Database Functions and Performance on SQL Server
	Database Administration, Object Design and Performance on SQL Server

	30.6 Configuration Parameters
	Index Hinting
	Lock Granularity

	30.7 Login Stored Procedure on the SQL Server Option
	Creating the Stored Procedure

	Appendixes
	C/SIDE Specifications
	A.1 Specifications for the DBMS
	A.2 Specifications for C/SIDE Application Objects

	Report Flow Charts
	B.1 Report Flow Charts
	B.2 Report.Run
	B.3 DataItem.Run
	B.4 Section.Run
	B.5 Header.Run
	B.6 Footer.Run
	B.7 TransHeader.Run
	B.8 TransFooter.Run
	B.9 GroupHeader.Run
	B.10 GroupFooter.Run
	B.11 Body.Run
	B.12 NewPage
	B.13 GetRecord

	Dataport Flow Charts
	C.1 Dataport Flow charts
	Legend

	C.2 Dataport.Import/Export
	C.3 DataItem.Export
	C.4 VariableRecord.Export
	C.5 FixedRecord.Export
	C.6 DataItem.Import
	C.7 VariableRecord.Import
	C.8 FixedRecord.Import

	NDBCS - The Database Driver
	D.1 NDBCS - the Database Driver
	Database Driver Concepts
	Command
	Direct and Prepared Execution
	Result Set
	Cursor
	Rowset
	Transaction Type

	Reading Data: Rowset Usage
	Modifying Data
	Transactions
	SIFT

	D.2 A Brief History of Performance Improvements
	The Features and The Versions
	Parameterization (2.50)
	Prepared Statements (2.50)
	Statement re-use (2.50)
	Fetch Buffer Growth (2.50)
	Paging in the User Interface (2.50)
	Preserving Rowsets during Modifications (2.50)
	Providing the ISEMPTY Alternative to FIND (2.50)
	Client Caching (2.50)
	Minimizing unnecessary Transactions (2.50)
	Using optimal SIFT queries (2.50)
	Bulk Fetching during a Backup, and Batch Inserting during a Restore (2.50)
	Extended Parameterization (2.60.A)
	Extended Preservation of Rowsets during Modifications (2.60.A)
	A New Algorithm for Deleting Rowsets (2.60.A)
	Using Single-row Rowsets for FIND (2.60.A)
	Modifying Fewer Fields (2.60.A)
	Client Analysis of Filters (2.60.D, 3.00)
	Extended Statement Re-use (3.00)
	Modified Threshold Values (3.00)
	Client Caching of SIFT Queries on Base Tables (3.00)
	Change to Prepared Statements (3.01)
	Change to Single-row Rowsets (3.01)
	Change to Rowset Closure and Cache Purging in Transactions (3.01)
	Utilizing Faster SQL Statements (3.01)
	Extended Client Caching (3.01)
	Change to Rowset Deletion (3.01)
	Change to Firehose Rowsets (3.10)
	Change to Rowset Closure Due to Modifications (3.10)
	Change to Rowset Memory Usage (3.10)
	Change to Rowset Expiry (3.10)
	Change to Transaction End Markers in the User Interface (3.10)
	Non-locked Rowsets Persist Beyond a Transaction (3.10)
	Automatic Bulk Inserts (3.10)

	Index

